1肾脏病科和研究实验室LR19ES11,突尼斯SFAX SFAX大学医学院; 2塞内加尔达卡(Dakar)Cheikh Anta Diop University的Dalal Jamm医院肾脏科学系; 3肯尼亚内罗毕的M.P Shah医院内科和肾脏病科; 4夸梅·恩克鲁玛科学技术大学医学系,加纳库马西; 5肾单位,加纳Kumasi的Komfo Anokye教学医院医学局;刚果民主共和国金沙萨大学内科系的肾单位6;毛里求斯Pamplemouses的SSR NA型医院7肾脏病态; 8南非开普敦Stellenbosch大学医学与健康科学系医学系肾脏科学系; 9肾脏科学学院卫生科学学院亚的斯亚贝巴大学,埃塞俄比亚亚的斯亚贝巴肾脏医学院肾单位; 10内科和专业系,喀麦隆Yaoundé大学医学与生物医学科学学院。 11尼日利亚尼日利亚尼日利亚大学医学院医学系肾单位; 12肾单位,尼日利亚亚历克斯·埃克瓦姆联邦大学教学医院内部医学系; 13南非约翰内斯堡维特沃特斯兰大学卫生科学学院临床医学学院内科。 14埃及吉萨开罗大学医学系;埃及肾脏学和移植学会;非洲肾脏病学会(AFRAN),阿拉伯肾脏病委员会; Mesot;议员DICG;和15肾脏科学和内科系,特雷希维尔大学医院,菲利克斯·霍夫特·博伊尼大学,阿比迪,科特迪瓦
抽象背景量超负荷很常见,并且与腹膜透析(PD)患者的高死亡率相关。传统策略在内,包括利尿剂,水/盐限制和基于IcoDextrin的解决方案不能总是完全纠正这种情况,因此需要采取新颖的替代策略。最近的研究证实了人腹膜中钠 - 葡萄糖共转运蛋白2(SGLT2)的表达。实验数据表明,SGLT2抑制剂可减少PD溶液中的葡萄糖吸收,从而增加超滤体积。该试验旨在评估SGLT2抑制剂是否会增加PD患者的超滤体积。方法是授权试验(试验注册:JRCTS051230081)是多中心,随机,双盲,安慰剂控制的交叉试验。患有临床诊断的慢性心力衰竭的患者,无论糖尿病是否存在至少3 L/天葡萄糖基于葡萄糖的PD溶液,他们都有资格。参与者将被随机分配(1:1),每天一次接收empagliflozin 10 mg,然后安慰剂,反之亦然。每个治疗期间将持续8周,并进行4周的冲洗期。这项研究将招募至少36位随机参与者。主要终点是每个干预期内从基线到第8周的每日超滤体积的变化。关键的次要终点包括排干PD溶液的生物标志物,肾脏残留功能和与贫血相关的参数的变化。结论该试验旨在通过PD患者的新型作用机理评估流体管理中SGLT2抑制剂的好处。它还将提供有关SGLT2抑制剂对跨腹膜溶质转运和残留肾功能的影响的见解。
1 Broer,S。&Gauthier-Coles,G。哺乳动物细胞中的氨基酸稳态,重点是氨基酸转运。J Nutr 152,16-28(2022)。https://doi.org:10.1093/jn/nxab342 2 Blau,N.,Duran,M.,Gibson,K。M.&Dionisi-Vici,C。遗传代谢疾病的诊断,治疗和随访的医生指南。3-141(Springer-Verlag,2014年)。 3 Holecek,M。为什么饥饿和糖尿病中分支链氨基酸会增加? 营养12(2020)。 https://doi.org:10.3390/nu12103087 4 White,P。J.等。 胰岛素作用,2型糖尿病和分支链氨基酸:一条双向街道。 mol Metab,101261(2021)。 https://doi.org:10.1016/j.molmet.2021.101261 5 Palacin,M。&Broer,S。在医师的诊断,治疗和随访的医师指南中(B.Thorn,M。Duran,M。Duran,K.M.M.M. Gibson和C. Dionisi-Vici)85-99(Springer-Verlag,2014年)。 6 Seow,H。F.等。 hartnup疾病是由编码中性氨基酸转运蛋白SLC6A19的基因突变引起的。 nat Genet 36,1003-1007(2004)。 https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。 抑制中性氨基酸转运以治疗苯酮尿症。 JCI Insight 3(2018)。 https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。3-141(Springer-Verlag,2014年)。3 Holecek,M。为什么饥饿和糖尿病中分支链氨基酸会增加?营养12(2020)。https://doi.org:10.3390/nu12103087 4 White,P。J.等。 胰岛素作用,2型糖尿病和分支链氨基酸:一条双向街道。 mol Metab,101261(2021)。 https://doi.org:10.1016/j.molmet.2021.101261 5 Palacin,M。&Broer,S。在医师的诊断,治疗和随访的医师指南中(B.Thorn,M。Duran,M。Duran,K.M.M.M. Gibson和C. Dionisi-Vici)85-99(Springer-Verlag,2014年)。 6 Seow,H。F.等。 hartnup疾病是由编码中性氨基酸转运蛋白SLC6A19的基因突变引起的。 nat Genet 36,1003-1007(2004)。 https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。 抑制中性氨基酸转运以治疗苯酮尿症。 JCI Insight 3(2018)。 https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。https://doi.org:10.3390/nu12103087 4 White,P。J.等。胰岛素作用,2型糖尿病和分支链氨基酸:一条双向街道。mol Metab,101261(2021)。https://doi.org:10.1016/j.molmet.2021.101261 5 Palacin,M。&Broer,S。在医师的诊断,治疗和随访的医师指南中(B.Thorn,M。Duran,M。Duran,K.M.M.M.Gibson和C. Dionisi-Vici)85-99(Springer-Verlag,2014年)。6 Seow,H。F.等。 hartnup疾病是由编码中性氨基酸转运蛋白SLC6A19的基因突变引起的。 nat Genet 36,1003-1007(2004)。 https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。 抑制中性氨基酸转运以治疗苯酮尿症。 JCI Insight 3(2018)。 https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。6 Seow,H。F.等。hartnup疾病是由编码中性氨基酸转运蛋白SLC6A19的基因突变引起的。nat Genet 36,1003-1007(2004)。https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。 抑制中性氨基酸转运以治疗苯酮尿症。 JCI Insight 3(2018)。 https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。抑制中性氨基酸转运以治疗苯酮尿症。JCI Insight 3(2018)。https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。遗传代谢疾病杂志N/A(2022)。https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。缺乏中性氨基酸转运蛋白B(0)AT1(SLC6A19)的小鼠的FGF21和GLP-1水平升高并改善了血糖控制。MOL METAB 4,406-417(2015)。 https://doi.org:10.1016/j.molmet.2015.02.003 10 Yadav,A。等。 新型化学支架抑制中性氨基酸转运蛋白B(0)AT1(SLC6A19),这是治疗代谢疾病的潜在靶标。 前药11,140(2020)。 https://doi.org:10.3389/fphar.2020.00140MOL METAB 4,406-417(2015)。https://doi.org:10.1016/j.molmet.2015.02.003 10 Yadav,A。等。 新型化学支架抑制中性氨基酸转运蛋白B(0)AT1(SLC6A19),这是治疗代谢疾病的潜在靶标。 前药11,140(2020)。 https://doi.org:10.3389/fphar.2020.00140https://doi.org:10.1016/j.molmet.2015.02.003 10 Yadav,A。等。新型化学支架抑制中性氨基酸转运蛋白B(0)AT1(SLC6A19),这是治疗代谢疾病的潜在靶标。前药11,140(2020)。https://doi.org:10.3389/fphar.2020.00140https://doi.org:10.3389/fphar.2020.00140
扭曲的双层石墨烯产生了大型Moiré模式,在机械放松时形成三角网络。如果包括门控,每个三角形区域的电子狄拉克点会弥补,这些零点的角度表现为散装拓扑绝缘子,其拓扑指数取决于山谷指数和堆叠的类型。由于每个三角形都有两个相对充满电的山谷,因此它们在拓扑上仍然很琐碎。在这项工作中,我们通过分析和计算Continuum PDE模型来解决与该系统边缘电流有关的几个问题。首先,我们得出与单个山谷相对应的散装不变式,然后应用散装的交接对应关系以量化沿着界面的不对称传输。其次,我们引入了一个山谷耦合的连续体模型,以显示在使用多尺度扩展的小扰动的情况下,如何将山谷分离,以及如何用于较大缺陷的Valleys夫妇。第三,我们提出了一种证明大型连续体(伪 - )不同模型的方法,即通过诸如三角形网络顶点等连接来保留量化的不对称电流。我们使用光谱方法来支持所有这些参数,以计算相关电流和波袋传播。
精确测量细胞中的机械力是理解细胞如何感知和对机械刺激的反应的关键,这是机械生物学的主要方面。但是,在活细胞中,准确量化单分子水平的动态力是一个重大挑战。在这里,我们开发了基于DNA的福克罗诺探针,以实现活细胞中单分子水平的整联蛋白力动力学的深入研究。通过阐明两个不同的机械点并规避单分子荧光的固有波动,Forcechrono探针可以分析单分子水平的机械力的复杂动力学,例如加载速率和持续时间。我们的结果将先前对细胞载荷速率的广泛估计提高到更精确的范围为0.5至2 pn/s,从而散发出细胞力学的细节。此外,这项研究揭示了整联蛋白力的幅度和持续时间之间的关键联系,这与在体外表现出的接管键行为一致。福克罗诺探针具有不同的优势,例如对单分子力动力学的精确分析以及对荧光波动的耐药性,这将显着提高我们对单分子水平上细胞粘附和机械转移的理解。
摘要:锂邻磷酸锂(Li 3 PS 4)已成为固态电池电池的有前途的候选人,这要归功于其高电导阶段,廉价的组件和较大的电化学稳定性范围。尽管如此,Li 3 PS 4中锂离子转运的显微镜机制远非充分理解,PS 4动力学在电荷运输中的作用仍然存在争议。在这项工作中,我们建立了针对最先进的DFT参考的机器学习潜力(PBESOL,R 2扫描和PBE0),以在Li 3 PS 4(α,α,β和γ)的所有已知阶段(α,α,β和γ)的所有已知阶段解决此问题,以实现大型系统大小和时间尺度。我们讨论了观察到的Li 3 PS 4的超级离子行为的物理来源:PS 4翻转的激活驱动了结构性过渡到高导电阶段,其特征在于Li地点的可用性增加以及锂离子扩散的激活能量的急剧降低。我们还排除了PS 4四面体在先前声称的超级离子阶段中的任何桨轮效应,这些阶段以前声称,由于PS 4 Flips的速率和Li-ion Hops在熔化以下的所有温度下,li-ion扩散。我们最终通过强调了Nernst -Einstein近似值以估计电导率的失败来阐明电荷转运中外部动力学的作用。我们的结果表明,对目标DFT参考有很强的依赖性,而PBE0不仅对电子带隙,而且对β-和α -LI 3 PS 4的电导率提供了最佳的定量一致性。
结果:模拟表明,使用标准的Indygo试验方案(光通量= 200 j cm 2在球囊壁上)在治疗结束时39%的GBM细胞在治疗结束时被杀死,并且最初的光敏浓度为5μmM.5μMM。 安全。增加P热敏化剂浓度产生的细胞杀伤最大增加,当将浓度加倍至10μm时,有61%的GBM细胞杀死了,并保持治疗时间并保持相同的能力。根据这些模拟,标准试验方案进行了合理的优化,并且在没有潜在危险的情况下,细胞杀死的改善难以实现。为了改善治疗结果,应将重点放在改善光敏剂上。
摘要:高尿酸血症已成为全球负担,随着相关代谢性疾病和心血管疾病的越来越多的患病率和风险。尿液疗法通过通过肾脏促进尿酸排泄,作为降低尿酸盐的重要疗法。但是,有效且安全的尿液疗法仍在迫切需要在诊所使用。在这项研究中,我们旨在建立体外和体内模型,以帮助发现新型的尿液治疗,并寻找有效的活性化合物,尤其是针对尿酸盐转运蛋白1(URAT1),这是肾脏处理尿酸稳态的主要尿酸盐转运蛋白。结果,对于初步筛选,使用非同位素尿酸摄取测定法在Hurat1稳固表达的HEK293细胞中评估了体外URAT1转运活性。在亚急性高尿症小鼠模型(亚hua)中评估了体内治疗效果,并在慢性高尿症小鼠模型(CH-HUA)中进一步确认。通过利用这些模型,获得化合物CC18002作为有效的URAT1抑制剂,IC 50值为1.69 µm,在亚hua和Ch-Hua小鼠中且降低的尿酸降低效应,与同一剂量的本茨溴酮相当。此外,CC18002处理不会改变黄嘌呤氧化还原酶(关键酶催化尿酸合成)的活性。综上所述,我们开发了一种新颖的筛选系统,包括针对URAT1的细胞模型和两种小鼠模型,以发现新型的尿液治疗。利用该系统,研究了化合物CC18002作为候选URAT1抑制剂治疗高尿酸血症。
本研究评估了使用专为脑 SPECT 设计的第二代多针孔 (MPH) 准直器在多巴胺转运蛋白 (DAT) SPECT 中减少扫描持续时间的可能性,与平行孔和扇形束准直器相比,该准直器具有更高的计数灵敏度和空间分辨率。方法:这项回顾性研究包括 640 例连续的临床 DAT SPECT 研究,这些研究均以列表模式使用配备 MPH 准直器的三头 SPECT 系统获取,在注射 181 6 10 MBq [ 123 I]FP-CIT 后净扫描持续时间为 30 分钟。通过将事件限制在每个投影角度的列表模式数据的按比例减少的时间间隔内,获得对应于扫描持续时间为 20、15、12、8、6 和 4 分钟的原始数据。无论扫描持续时间如何,都使用相同的参数设置迭代重建 SPECT 图像。通过视觉评估、常规特异性结合率分析和在 30 分钟扫描上训练的深度卷积神经网络,对得到的 5,120 张 SPECT 图像进行评估,以确定纹状体信号是否存在神经退行性典型的减少。结果:关于视觉解释,在 12 分钟的扫描持续时间内,图像质量对于所有 640 名患者都被认为具有诊断意义。30 到 12 分钟之间视觉解释不一致的比例(1.2%)不大于同一读者在 30 分钟扫描持续时间内两次阅读之间视觉解释不一致的比例(1.5%)。在 10 分钟的扫描持续时间内,对于 5% 的重测变异性,30 分钟图像的壳核特异性结合率的一致性好于预期。在 6 分钟或更短的扫描持续时间内观察到基于卷积神经网络的自动分类的相应变化。结论:采用配备 MPH 准直器的三头 SPECT 系统,在施用约 180 MBq 的 [ 123 I]FP-CIT 并持续 12 分钟后,可实现可靠的 DAT SPECT。
在2016年11月的会议上,MOH药物咨询委员会(“委员会”)考虑了用于对钠 - 葡萄糖共同转运蛋白2(SGLT2)抑制剂(Canaglifliflozin,dapaglifliflozin和empagliflozin)进行技术评估的证据,作为双重或三重或三重或三重或伴侣的一部分。随后在2018年1月向委员会提出了一项评估,以考虑使用SGLT2抑制剂作为胰岛素的附加疗法。医疗机构(ACE)与卫生部糖尿病工作组的临床专家协商进行评估。已公开针对SGLT2抑制剂的临床和经济证据,根据临床专家定义的特定临床标准,以反映其在当地临床实践中的使用。证据被用来告知委员会围绕四个核心决策标准的审议: