尽管已经提出了许多分割方法,但可以进一步提高分割结果的准确性。随后,本研究试图提供有关称为感兴趣区域(ROI)的大小,初始位置和形状(ROI)的非常重要的特性,以启动分割过程。MRI由特定人而不是一个图像的一系列图像(MRI切片)组成。我们的方法根据肿瘤大小,初始位置和形状选择其中的最佳图像,以避免部分体积效应。测试我们方法的所选算法是主动轮廓和OTSU阈值算法。在本研究中使用Brats标准数据集进行了几项实验,该数据集由100个样本组成。这些实验由65名患者的MRI切片组成。使用骰子,jaccard和BF分数通过相似系数作为标准度量来评估所提出的方法。结果表明,当在三个不同的相似性系数中测试时,主动轮廓算法具有较高的分割精度。此外,两种算法的实现结果验证了建议的方法选择MRI样品最佳ROI的能力。
尽管制造业的自动化程度已经提高,但建筑业的自动化程度却一直很低。传统的制造自动化方法不适用于建造具有内部特征的大型结构。这或许可以解释建筑自动化的缓慢增长速度。轮廓加工 (CC) 是一种最新的分层制造技术,在整个结构及其子组件的自动化建造方面具有巨大潜力。使用此过程,可以一次性自动建造一栋房屋或一组房屋,每栋房屋可能具有不同的设计,并在每栋房屋中嵌入所有用于电气、管道和空调的管道。我们的研究还涉及 CC 在其他星球上建造栖息地的应用。CC 很可能是极少数在其他星球上建造结构的可行方法之一,例如月球和火星,这些星球是人类在新世纪末之前定居的目标。D 2003 Elsevier BV 保留所有权利。
2005年,国会通过了《武器法》(PLCAA)的保护,授予了枪支行业,从而避免了民事诉讼的豁免权。但是,PLCAA免疫力不是绝对的。本文表明,在裁定涉及枪支行业免疫范围的案件时,州和联邦法院在裁定案件时都会从根本上误读PLCAA。正确理解,PLCAA允许针对枪支行业提起诉讼,只要它们基于法定行动原因而不是普通法。虽然广泛提高州普通法的主张,但PLCAA为州立法机关提供了自治,以决定如何规范其边界内的枪支行业。此外,本文解决了有关枪支行业法规的宪法限制的未解决问题。PLCAA明确达到三个宪法原则之间的平衡。它通过保护枪支行业免受民事诉讼的侵害,保护个人保留和承担武器的权利,这将不足以削弱平民访问枪支的机会。坚持认为,权力的分离要求枪支行业法规应源于立法,而不是普通法裁决。它使州政府在决定如何规范枪支行业方面具有自治权,并认识到有关如何最好地减少与枪支相关的暴力行为存在区域差异。我们向对《第二修正案》申请枪支行业法规的申请的解释提供咨询,该法规将扩大保留和承担武器的权利,而牺牲了其他重要的宪法原则,例如分离权力和联邦制。
AlkotmányU的生态研究中心生态学与植物学研究所。2 - 4,H-2163Vácrátót,匈牙利B森林现场诊断和分类部,pf。132,H-9401 Sporon,匈牙利C植物解剖学系,生物学研究所,EötvösLorándUniversity,PázmányP。Stny。 1/c,H-1117布达佩斯,匈牙利d ostffyasszonyfai u。 60,H-9600Sárvár,匈牙利E系,兽医大学,PF。 2,H-1400布达佩斯,匈牙利F森林和森林保护研究所,pf。 132,H-9401 Sporlon,匈牙利G Bem J. U。 1/d,H-2066Szár,匈牙利H Zichy P. U。 3/1, H-2040 Budaörs, Hungary i Biodiversity & Macroecology Group, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum – University of Bologna, via Irnerio 42, 40126 Bologna, Italy j Plant Protection Institute, Centre for Agricultural Research, Herman O. u. 15,H-1022布达佩斯,匈牙利K Damjanich J. U。 137,H-1154布达佩斯,匈牙利L部,匈牙利自然历史博物馆,巴罗斯U。 13,H-1088布达佩斯,匈牙利132,H-9401 Sporon,匈牙利C植物解剖学系,生物学研究所,EötvösLorándUniversity,PázmányP。Stny。1/c,H-1117布达佩斯,匈牙利d ostffyasszonyfai u。60,H-9600Sárvár,匈牙利E系,兽医大学,PF。 2,H-1400布达佩斯,匈牙利F森林和森林保护研究所,pf。 132,H-9401 Sporlon,匈牙利G Bem J. U。 1/d,H-2066Szár,匈牙利H Zichy P. U。 3/1, H-2040 Budaörs, Hungary i Biodiversity & Macroecology Group, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum – University of Bologna, via Irnerio 42, 40126 Bologna, Italy j Plant Protection Institute, Centre for Agricultural Research, Herman O. u. 15,H-1022布达佩斯,匈牙利K Damjanich J. U。 137,H-1154布达佩斯,匈牙利L部,匈牙利自然历史博物馆,巴罗斯U。 13,H-1088布达佩斯,匈牙利60,H-9600Sárvár,匈牙利E系,兽医大学,PF。2,H-1400布达佩斯,匈牙利F森林和森林保护研究所,pf。132,H-9401 Sporlon,匈牙利G Bem J. U。 1/d,H-2066Szár,匈牙利H Zichy P. U。 3/1, H-2040 Budaörs, Hungary i Biodiversity & Macroecology Group, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum – University of Bologna, via Irnerio 42, 40126 Bologna, Italy j Plant Protection Institute, Centre for Agricultural Research, Herman O. u. 15,H-1022布达佩斯,匈牙利K Damjanich J. U。 137,H-1154布达佩斯,匈牙利L部,匈牙利自然历史博物馆,巴罗斯U。 13,H-1088布达佩斯,匈牙利132,H-9401 Sporlon,匈牙利G Bem J. U。1/d,H-2066Szár,匈牙利H Zichy P. U。3/1, H-2040 Budaörs, Hungary i Biodiversity & Macroecology Group, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum – University of Bologna, via Irnerio 42, 40126 Bologna, Italy j Plant Protection Institute, Centre for Agricultural Research, Herman O. u.15,H-1022布达佩斯,匈牙利K Damjanich J. U。137,H-1154布达佩斯,匈牙利L部,匈牙利自然历史博物馆,巴罗斯U。13,H-1088布达佩斯,匈牙利
1挪威分子医学中心(NCMM),北欧EMBL合作伙伴关系,奥斯陆大学,奥斯陆0318,奥斯陆,挪威2 Laboratoire Physiologie Pellulagie Cellulaire etvégétale,Univ。Grenoble Alpes,CNRS,CEA,INRAE,IRIG-DBSCI-LPCV,17 Avenue des Martyrs,F-38054,F-38054,法国格林诺布尔,法国3号3号3月3日生物信息学中心,OSLO大学OSLO大学,OSLO大学,OSLO,OSLO,OSLO,NORWAIND 4 MRC LONDY INTICER,MRC LONDY INSTICE of MEDICAL SCIINUTE,DU CANEE,DU CANEE ROADN,DU CANE ROADN,DU CANE ROADN,W1 22 02科学,医学院,伦敦帝国学院医学院,哈默史密斯医院校园,杜凯路,伦敦W12 0nn,英国6 u cane of Electronics,Ru-derBoškovi研究所,BIJENI ˇCKA CESTA,CCKA CESTA,CCKA CESTA,10000 ZAGREB,CROATIA,CROATIA,CROATIA 7 Stanford Cancer Schoolitute of Stanford Cornement of Stanford of Stanford of Stanford of Stanford,CANANFOURT,CAN FORMEREN,CANFOURD,CANANFOURT,CANANFOURD,CANANFOURT不列颠哥伦比亚大学医学遗传学系,医学遗传学系,不列颠哥伦比亚大学,950 W 28号大街,卑诗省V5Z 4H4,加拿大9 H4,加拿大9号肿瘤生物学系,奥斯陆大学医院研究所,奥斯陆大学医院0424 OSLO,挪威10号生物学研究和生物学研究和Innovation Centry of Innovation and Innerovation Centres,002.丹麦哥本哈根N,奥斯陆大学临床医学研究所和奥斯陆大学医院,奥斯陆,挪威奥斯陆医院
这项研究旨在通过化学和感觉评估来表征Zelen(Vitis Vinifera L.)葡萄酒的芳香独特性,这是一种来自斯洛文尼亚西部的Vipava山谷的自多品种。通过HS-SPME-GC-MS分析了七十种芳香族化合物,包括品种硫醇,酯,C6-醇,挥发性苯酚,萜类化合物,萜类化合物和丙烯酸酯,在两个调查中,通过HS-SPME-GC-MS进行了比较,将Zelen Wines与Vipava Valley的其他四种种植者进行了比较。Zelen葡萄酒的嗅觉空间是通过将其芳香剖面与Pinela葡萄酒的芳香剖面在分类任务中进行比较,并通过HPLC分数获得的芳香族馏分的嗅探。Zelen葡萄酒的特征是干草药和辣味,例如百里香,迷迭香和罗勒,与Pinela Wines相比。Zelen葡萄酒的化学特征是由单烯烯的原始混合物(包括萜烯异构体,林烯,limonene,p-甲苯,萜酚,linalool,linalool和α-耐酚)的原始混合物所支配的。获得的4-乙烯基鸟醇和甲基水杨酸酯的浓度位于与报道的嗅觉阈值接近或更高的水平上,从而推断了这些化合物对Zelen葡萄酒的辛辣芳香族成分的潜在贡献。通过HPLC半生育分级溶解的Zelen葡萄酒的两种芳族馏分,并通过HS-SPME-GC-MS进行了进一步分析,并通过HS-SPME-GC-MS进行了浏览的存在,这些原始混合物的存在是水合碳单位烯的原始混合物,包括定量测量的化合物,以及其他β-Myrc-β-Myrc,例如β-Myrc,以及其他化合物,以及其他化合物。 E-β-乙烯,Z-β-乙二烯和两个2,4,6-二十二烯-2,6-二甲基异构体。半定量测量结果表明,这组新的单甲烯类也比Pinela,Malvasia Istriana,Chardonnay和Sauvignon Blanc葡萄酒更高。
抽象的气候和土地管理变化正在改变土壤的碳输入。这种输入变化对长期土壤有机碳(SOC)平衡的结果取决于碳输入的过境行为。使用观察性碳输入和全球土壤剖面中的放射性碳数据,我们揭示,无论进入深度,新进入碳休假土壤中的新进入碳休假土壤中近25%,而30年后的剩余分数仅为13%。尽管如此,大多数SOC在所有土壤深处都年龄超过30岁。一起,这些结果表明,碳输入向老年SOC的转移效率低,这是长期SOC固存的有意义的碳成分。此外,我们揭示了SOC老化和碳输入过渡是两个不同的过程,应同时进行,但要分开机械性,以预测和管理SOC动态,以响应气候和土地管理变化下的碳输入变化。
添加剂制造。因此,本研究介绍了使用高斯过程回归模型对重叠轨道进行表面吸引数据驱动的建模。所提出的高斯工艺建模框架明确合并了两个相关的几何特征(即,从喷嘴出口到表面的表面类型和极长),以及广泛采用的高斯超级底座模型,作为先前的域知识,形式为显式均值函数。表明,所提出的模型可以比单独使用高斯超级插曲模型和纯粹的数据驱动的高斯过程模型提供更好的预测性能,从而提供了一致的重叠轨道预测预测。通过将轨道几何形状的准确预测与工具路径计划相结合,可以预计在冷喷雾添加剂制造中可以提高几何控制和产品质量。
大脑网络可以通过在一个区域中提供电流的简短脉冲,同时测量其他区域的电压响应,从而探索大脑网络。我们提出了一个收敛范式来研究脑动力学,重点是单个大脑部位,以观察刺激许多其他大脑部位的平均效果。以这种方式观察,在相邻刺激位点出现了时间响应形状中的视觉图案。这项工作构建并说明了一种数据驱动的方法,以确定这些响应形状中特征时空结构的方法,总结了一组唯一的“基本轮廓曲线”(BPC)。每个BPC可以以自然的方式映射到潜在的解剖结构,并使用简单的指标从每个刺激位点量化投影强度。我们的技术已用于人类患者中的一系列植入脑表面电极。该框架可以直接解释单脉冲脑刺激数据,并可以一定地应用于探索构成连接组的相互作用的多样化环境。
• true north point, or relationship to true north • Scale, generally 1:100 or 1:200 • Position of all existing structures, with floor level & ridge height of main building • Position of existing structures on adjoining land within 3 metres of the boundary, including description, street number, floor level, ridge height, and window levels & locations in the walls closest to the side boundaries • Levels – spot levels & existing contours related to Australian Height Datum (AHD) with bench mark details和所示的水平来源•树木 - 精确的位置,躯干直径(如果大于200mm),高度,差异和物种(如果已知) - 在主题现场以及现场边界3米以内的毗邻土地•现场和理事会步行区域内所有可见的服务,包括雨水坑和雨水坑和雨水坑,水位,水液,下水道,telstra pits等<<<<<<<<<<•具体路径,车辆横梁,遏制位置具有遏制水平的顶部以及遏制插座•具有尺寸的标题边界•所有现有地役权的位置和类型以及包括党墙和普通墙的所有现有地役权和权利•当前的文献证据(第88B节或交易)(88b仪器或交易)与在