风能、叶片、水力发电、储能、公用事业规模太阳能和电网解决方案以及混合
3.2当替代安全的工作系统不是另一组WTSR 3.2.1确认确认,首席承包商/公司具有识别危害和消除危害和/或控制它们的手段的过程,以便满足立法要求。3.2.2确认首席承包商/公司有培训和授权记录以涵盖作品范围。3.2.3确认首席承包商/公司对WTG的了解要属于其SSOW(可能需要熟悉站点)。3.2.4确认首席承包商/公司具有正式实施其SSOW的流程。3.2.5确认如何实现WTG的安全访问和出口,并保留哪些记录。
航空弹性振动是由空气动力和风力涡轮叶片的结构动力学之间的复杂相互作用引起的,是导致疲劳,结构损伤,效率降低以及风力涡轮机系统中维护成本提高的主要原因。解决此问题对于增强风力涡轮机的运行性能,耐用性和寿命至关重要,这使得振动控制成为可再生能源行业的关键重点。本文研究了同步开关阻尼(SSD)模态方法,这是一种非线性控制技术,专门为其通过靶向和抑制不需要的振动模式而有效减轻航空弹性振动的能力。通过将压电组件与刀片运动和谐的指定电路同步,SSD模态方法可提供精确而适应性的振动控制。我们的研究证明了半活动模态SSD方法的有效性,从而降低了叶片振动的30.42%。这种实质性的减少不仅增强了整体性能,还可以增强风力涡轮机叶片的寿命,从而在振动控制策略方面取得了重大进步,并有助于开发更可靠和有效的风能系统。
在地理上分散的非线性战斗空间(例如,长时间的伤亡护理)中,远程或严峻环境中的资源限制需要解决方案来帮助医务人员最有效地利用稀缺的医疗资源。具体来说,使用AI解决方案有助于医师识别需要挽救生命的干预措施,快速撤离和立即进行医学重新供应的患者才能在所有护理梯队中进行决策优势。To support this, medics and operators need new medical logistics models compatible with gov platforms to identify patients with a high risk of medical decompensation and track the utilization and status of medical equipment and depletable medical items used to provide medics recommendations on alternative care opportunities (e.g., depletion of opiate analgesics and consideration of alternative pain dose ketamine).这些数据可以帮助医务人员在需要的时刻通知医生,并建议在其有机医疗工具包中使用稀缺资源。
摘要:本出版物研究了抽水蓄能和电池储能系统的协调运行以提高盈利能力。抽水蓄能提供高存储容量但响应时间较慢,而电池储能系统容量较低但响应时间较快。因此,结合两者的混合系统可以利用协同效应。开发了一个混合整数线性规划模型来描述德国市场上这两个系统的协调使用。所提出的方法也适用于以类似方式交易能源和平衡服务的其他区域市场。在该模型中,抽水蓄能系统在现货市场运行并提供自动频率恢复储备,而电池储能系统提供频率遏制储备。该模型考虑了两种存储类型中退化效应造成的成本。结果表明,与两个存储系统的独立运行相比,通过协调,收入增加了 10.05%。这一附加值可以通过在协调运行中更有效地利用电力容量(尤其是电池储能系统的电力容量)来实现。
摘要:本出版物研究了泵送水电存储和电池储能系统的协调运营,以提高利用能力。虽然泵送的水电储藏可提供较高的存储容量,但响应时间较慢,但电池储能系统的容量较低,但响应时间更快。结合两者的混合系统可以利用协同作用。开发了一种混合企业线性编程模型,以描绘德国市场中这两个系统的协调使用。所提出的方法也适用于其他区域市场以类似方式交易的能源和平衡服务。在此型号中,泵送的水电存储在现货市场中运行,并提供自动频率恢复储备,而电池储能系统则提供频率遏制储备。该模型考虑了两种存储类型中降解效应所引起的成本。结果表明,与两个存储系统的独立运营相比,通过协调增加了10.05%。可以通过更有效地使用功率容量,尤其是电池能量系统的功率来实现此附加值。
摘要:本出版物研究了泵送水电存储和电池储能系统的协调运营,以提高利用能力。虽然泵送的水电储藏可提供较高的存储容量,但响应时间较慢,但电池储能系统的容量较低,但响应时间更快。结合两者的混合系统可以利用协同作用。开发了一种混合企业线性编程模型,以描绘德国市场中这两个系统的协调使用。所提出的方法也适用于其他区域市场以类似方式交易的能源和平衡服务。在此型号中,泵送的水电存储在现货市场中运行,并提供自动频率恢复储备,而电池储能系统则提供频率遏制储备。该模型考虑了两种存储类型中降解效应所引起的成本。结果表明,与两个存储系统的独立运营相比,通过协调增加了10.05%。可以通过更有效地使用功率容量,尤其是电池能量系统的功率来实现此附加值。
我们已经使用Edna方法研究了Kriegers Flak Offshore Wind Wind Find的生物多样性,以刮擦三个风力涡轮机塔的海面下方,以及Edna样品在水柱上下的Edna样品靠近同一塔楼和离岸风电场外的水柱上部和下部的屋顶。这些刮擦也已在分类法实验室中进行了比较。最后,涡轮塔的生物社会,相关的侵蚀保护,周围的沙质底部以及在自然礁的三个位置进行了从水下无人机(Prey)研究中描述,并对物种沉积物的视觉评估及其覆盖率进行了视觉评估。ROV和刮擦是作为替代计划的潜水下台的替代者,如果无法通过正常的科学潜水调查来满足要求,则无法进行海上风电场。
有机朗肯循环是将低品位热源转化为电能的可用解决方案之一。然而,由于膨胀机的特殊设计,工厂的开发往往非常昂贵。通常,设计 ORC 工厂的输入参数是热源和冷源的温度和功率。它们决定了工作流体、压力和温度的选择。然后根据所需的操作参数设计膨胀机。使用市场上容易买到且性能众所周知的标准涡轮机可以降低开发和制造成本。然而,必须对 ORC 进行调整,以使膨胀机在最佳条件下工作。对于太阳能聚光热源,可以通过调整聚光系数和集热器总面积来调整温度和功率。在本文中,考虑使用给定的燃气轮机作为 ORC 的膨胀机。了解涡轮机在空气中的性能后,基于相似规则寻找不同流体的 ORC 的最佳运行参数(压力、温度、流量和转速)。调整的目的是保持工作流体与空气相同的密度变化、相同的入口速度三角形和相同的入口马赫数。然后使用 CFD 模拟计算涡轮机的性能图,并显示最大等熵效率接近空气,约为 78%。
摘要。预计到 2050 年,风能将占全球产量的 35%,其中位于高风速地区的大型风力发电场将做出重大贡献。然而,在低风速地区,需要调整涡轮机以最大程度地提高效率。这导致了基于仿生原理的叶片的开发,这些叶片可提高此类条件下的性能。为了验证这种方法,提出了对传统涡轮机和仿生涡轮机进行空气动力学比较分析的建议。所提出的方法涉及使用计算流体动力学 (CFD) 模拟和叶片元素动量理论 (BEMT) 来预测两种设计的行为。评估功率系数 (Cp)、推力 (Ct)、轴向力和扭矩等变量,比较转子在相同条件下的性能。目标是确定仿生涡轮机的可行性及其在低风速(从 2.5 m/s 开始)下对水平轴风力涡轮机的适应性。经 CFD 和 BEMT 模拟验证的结果显示,仿生涡轮机的性能比传统转子高出 33%,凸显了其在恶劣环境条件下提高风能效率的潜力,尤其是在风速较低或不稳定的地区。这证明了仿生设计在增强可再生能源技术方面的可行性。