摘要 - 本文介绍了基于经济标准的PV阵列和风力涡轮机发生的大型和小规模压缩空气存储(CAE)的经济和实验研究。详细介绍了具有三个不同案例研究的两个不同的CAES系统。第一个型号包括涡轮,压缩机和存储储层量的风力涡轮机,压缩机和存储库,分别为220 MW,200 MW和150,000 M3。一个小的CAES功率系统由Bergey Excel-S 10 kW的5 kW隔离载荷组成,以调查提出的模型的有效性,以研究另一种应用。第二个介绍的模型基于PV面板提供的实际原型测试和实验室测量。一个原型模型的构建较小,以指示系统特性及其主要有效参数。此外,基于提议的原型系统的基础知识将对孤立的埃及村庄(halayeb)进行的案例研究作为第三个案例研究。结果证明了CAES系统提供网格隔离村庄的家庭负载的能力。最后,该论文对提出的系统进行了经济分析。
垂直轴风力涡轮机 (VAWT) 为城市环境中的可再生能源发电提供了一种有前途的解决方案,而传统的水平轴涡轮机通常不切实际。这篇综述论文研究了城市环境中 VAWT 设计优化的最新进展,重点是克服与低风条件和复杂的城市风模式相关的挑战。我们分析了创新的空气动力学设计,包括螺旋和 Savonius-Darrieus 混合模型,这些设计可提高湍流和多向风中的性能。本文还探讨了平衡耐用性、降噪和成本效益的材料和制造技术。此外,我们还回顾了在多变风条件下最大限度捕获能量的尖端控制系统和电力电子设备。我们讨论了 VAWT 与建筑结构和城市规划的整合,强调了广泛采用的潜力。我们的研究结果表明,VAWT 技术的最新创新已显著提高了它们在城市应用中的可行性,一些设计在低风条件下实现了高达 30% 的效率提升。然而,在优化启动性能、降低生产成本和减轻人口密集地区的环境影响方面仍然存在挑战。本综述强调了 VAWT 作为可持续城市能源系统关键组成部分的潜力,并确定了未来研究和开发的关键领域,包括先进材料、人工智能驱动的控制系统和全面的城市风能测绘工具。
Paul Simshauser ♣♠ 和 Joel Gilmore ♣ 摘要 澳大利亚电力系统规划人员的长期任务是确定与淘汰国家电力市场 (NEM) 煤炭机组相关的结构调整路径。系统规划模型力求在可靠性约束下以最低成本实现这一目标。这涉及部署低成本间歇性风能和太阳能资源以及可调度、灵活的“稳固”资产组合。因此,煤炭的能源生产角色被可再生能源取代,而稳固职责则被短时电池、中时抽水蓄能和最后一道防线——燃气轮机取代。事实证明,稳固资产的组合至关重要。在本文中,我们研究了后煤炭时代的 12 个(匿名)电力市场模型预测,发现在关键的冬季,所有这些预测都出人意料地严重依赖燃气轮机。使用东澳大利亚天然气市场的动态部分平衡模型,我们测试了新兴燃气轮机机组似乎带来的需求冲击的严重程度。偶发性需求冲击似乎难以解决,尤其是当电池和抽水蓄能电站在总发电组合中“权重不足”时。政策制定者有足够的时间有序应对。关键词:天然气市场、燃气轮机、可再生能源、稳固产能。JEL 代码:D52、D53、G12、L94 和 Q40。
图 3 (A) 根据方程 (11),建模的时间延迟(以秒为单位)与流向距离 x 的关系,其中积分上限为 x,不同的颜色代表不同的偏航角。 (B) 建模的两个涡轮机之间的时间延迟(以秒为单位)与第一个涡轮机的偏航的关系。 对于该测试,涡轮机直径为 100 m,涡轮机轮毂高度也是 100 m,自由流速度为 U ∞ = 7:77 m/s,并通过设定摩擦速度 u ∗ = 0:45 m/s 来确定,然后使用方程 U ∞ =ðu∗lnðzh=z0ÞÞ=0:4 来找到轮毂高度的自由流速度。局部推力系数为 C0T = 4 = 3,尾流膨胀系数由公式确定:kw = u∗ = U∞ = 0:0579
挑战:预先燃烧器中的NOx排放和性能/可靠性问题增加现有的燃烧器排放/性能限制新的H 2燃烧器设计高H 2浓度我们的解决方案我们的解决方案:SWRI运行多个燃烧钻机,可以测试大量测试的大规模测试措施,并可以测试高度尺寸的测试措施,内部旋转的固定装置,内置的Indextor Indibord indimult Indimult Indimolt indimult Indimul组件开发 - 开发和测试原型注射器和燃烧器,包括开发添加性生产的喷油器 - 开发和测试微涡轮机原型 - 操作两个微涡轮测试钻机和P&W JT15D发动机测试台 - 20 bar Air Supperi
实验室的指导框架符合国际标准(IEC 60193:2019 和 ISO/IEC 17025:2017)的要求。该实验室已获得国家检测和校准认证委员会 (NABL) 的认证,符合 ISO/IEC 17025:2017 流体流量测试和流量校准标准。该实验室已成功为 Voith India Pvt. Ltd、Flovel Energy Pvt. Ltd 和 KBL 等多家组织进行了见证测试。实验室负责人还作为独立顾问在奥地利林茨的 Andritz Works 见证了 Karnataka Power Corporation Limited 的模型测试。
** 型号证书的有效期仅限于组件证书的到期日,即 2027 年 4 月 13 日。免责声明:RLMM 列表中包含任何风力涡轮机制造商和风力涡轮机模型均基于各自公司提供的文件和信息,并不构成对列表中所含风力涡轮机模型的任何认证或推荐,包括适用性、可用性等。尽管如此,MNRE 绝不对任何后果负责,包括任何一方在任何时候使用该列表可能产生的技术、商业、运营、环境和法律影响。使用、完整文件验证及其后果的责任完全由用户承担。
摘要 本文全面分析了风力涡轮机设计和海上风能集成方面的进步,强调了技术创新、经济可行性和环境影响。它探讨了由技术进步推动并得到经济和环境考虑支持的风能的重大进展。该方法包括对近期文献、政策框架和案例研究的广泛审查,以评估风能的现状和未来前景。主要发现表明,大型涡轮机设计、浮动风力涡轮机和先进材料等创新显著提高了涡轮机的效率和可靠性,从而增加了能量捕获量并降低了成本。该研究强调,陆上和海上风电项目的平准化能源成本 (LCOE) 大幅降低,使风能与传统化石燃料的竞争力越来越强。支持性政府政策和创新融资机制对于吸引投资和促进该行业的增长至关重要。尽管取得了这些进步,但风能仍存在一些挑战,例如对野生动物的影响和噪音污染,