在发达的智能脑控制轮椅系统中,使用频率范围作为特征对获得的大脑信号进行了分类。出于分类目的,众所周知的)脑可视化器用于获得频率。这些信号分为四个特征:小于40 Hz,41-50 Hz,51 - 60 Hz,61 -70 Hz,71 - 80 Hz,大于81 Hz,分别表示停止,左,右,向前和反向。因此,以四个方向的形式的分类信号用于控制轮椅方向运动。轮椅还配备了两个超声波传感器(一个在轮椅的前面,一个在轮椅上,另一个在后面)。如果在30厘米的范围内检测到任何障碍物,轮椅停止。节点MCU用于在紧急情况下通过电报向看守发送消息。延迟几秒钟后,如果获得了信号,则该过程将继续。
提前获取陌生地方的无障碍信息对于轮椅使用者更好地决定是否进行实地访问至关重要。如今的评估方法,例如电话、照片/视频或 360 度虚拟游览,往往无法提供针对个体差异所需的具体无障碍细节。例如,它们可能无法透露关键信息,例如桌子下面的腿部空间是否足够宽敞,或者设备的空间配置是否方便轮椅使用者使用。针对这一问题,我们提出了 Embodied Exploration,这是一种虚拟现实 (VR) 技术,可提供实地访问的体验,同时保持远程评估的便利性。Embodied Exploration 允许轮椅使用者利用越来越便宜的 VR 耳机,以化身的形式探索物理环境的高保真数字复制品。通过初步的探索性研究,我们调查了需求并不断改进我们的技术。通过对六名轮椅使用者进行真实世界用户研究,我们发现 Embodied Exploration 能够促进远程和准确的无障碍评估。我们还讨论了设计对具体化、安全性和实用性的影响。
摘要:当使用凝视运动操作电动轮椅时,检查环境和观察物体等眼球运动也会被错误地识别为输入操作。这种现象被称为“点石成金问题”,对视觉意图进行分类非常重要。在本文中,我们开发了一种实时估计用户视觉意图的深度学习模型,以及一种结合意图估计和凝视停留时间方法的电动轮椅控制系统。所提出的模型由 1DCNN-LSTM 组成,它从 10 个变量的特征向量估计视觉意图,例如眼球运动、头部运动和到注视点的距离。对四种视觉意图进行分类的评估实验表明,与其他模型相比,所提出的模型具有最高的准确性。此外,实施所提出模型的电动轮椅的驾驶实验结果表明,与传统方法相比,用户操作轮椅的努力减少了,轮椅的可操作性得到了提高。从这些结果中,我们得出结论,通过从眼球和头部运动数据中学习时间序列模式可以更准确地估计视觉意图。
摘要:大脑 - 计算机界面(BCIS)广泛用于严重身体残疾患者的控制应用中。一些研究人员的目的是开发实用的脑控制轮椅。基于稳态的视觉诱发电势(SSVEP)的现有脑电图(EEG)基于BCI是为了控制设备控制的。这项研究利用了可靠的现有系统的快速响应(QR)代码视觉刺激模式。使用提出的带有四个可振动频率的视觉刺激模式生成四个命令。此外,我们采用了SSVEP特征提取的相对功率谱密度(PSD)方法,并将其与绝对PSD方法进行了比较。我们设计了实验来验证所提出系统的效率。结果表明,所提出的SSVEP方法和算法在实时处理中产生的平均分类精度约为92%。对于通过基于独立的控制模拟的轮椅,提议的BCI控制需要比键盘控制的时间大约五倍以进行实时控制。使用QR码模式的建议的SSVEP方法可用于基于BCI的轮椅控制。然而,由于长期连续控制,它因视觉疲劳而受到影响。我们将在严重的身体残障人士中验证和增强拟议的轮椅控制系统。
摘要 在本文中,我们介绍了一种导航机器人轮椅的方法,该方法为用户提供了多层次的自主性和导航能力,以满足他们的个人需求和偏好。我们主要关注三个方面:(i)以自我为中心的基于计算机视觉的运动控制,为手部使用受损的轮椅使用者提供自然的人机界面;(ii)使用户无需使用手即可启动到某个位置、物体或人的自主导航的技术;(iii)一个框架,该框架根据用户通常是主观的标准和偏好来学习导航轮椅。这些贡献在用户研究中进行了定性和定量评估,几名受试者证明了它们的有效性。这些研究都是针对健康受试者进行的,但它们仍然表明可以启动对所提出技术的临床试验。
人机交互 (HMI) 允许人们控制和与设备交互。从获取输入生物信号的基本设备开始,到控制各种应用程序。医疗应用是 HMI 非常重要的应用之一。这些医疗应用之一是帮助完全/部分瘫痪的患者恢复运动或使用外骨骼或电动轮椅自由移动。帮助脊髓损伤或严重神经系统疾病患者恢复运动是该领域大多数研究人员的关键角色目标。在本文中,提出了一种基于 EEG 的 HMI 系统,以帮助四肢瘫痪患者在精神上控制电动轮椅,使他们能够自由独立地移动。记录、过滤来自大脑额叶的 EEG 功率谱 (α、β、δ、θ 和 γ) 并将其无线发送到轮椅以控制方向和发动机状态。使用所提出的系统进行了四个不同的实验以验证性能。实验中使用了两种不同的 GUI 场景(十字形和水平条)。结果表明,横杆方案更方便用户使用,而十字形更适合导航。实施的系统可以配备 GPS、超声波和加速度计等模块和传感器,以提高系统性能和可靠性。
英国目前正面临多年来最大的生活成本危机。家庭能源、食品和汽油成本大幅上涨是罪魁祸首,未来几个月情况可能会变得更糟,目前通胀率为 8.8% 4,冬季来临,人们使用更多的能源。能源价格上限由能源行业监管机构 Ofgem 每季度设定一次,去年 10 月为 1,400 英镑,今年 10 月将上涨至 3,549 英镑。5 政府最近宣布的家庭支持计划将限制家庭每单位天然气和电力的价格,一个普通家庭支付的价格约为 2,500 英镑。6 这项支持措施受到欢迎,但人们普遍预计,今年冬天许多人将无法支付能源费用。7
摘要:大多数运动障碍人士使用操纵杆来控制电动轮椅。然而,患有多发性硬化症或肌萎缩侧索硬化症的人可能需要其他方法来控制电动轮椅。本研究实施了基于脑电图 (EEG) 的脑机接口 (BCI) 系统和稳态视觉诱发电位 (SSVEP) 来操纵电动轮椅。在操作人机界面时,三种涉及实时虚拟刺激的 SSVEP 场景显示在显示器或混合现实 (MR) 护目镜上以产生 EEG 信号。使用典型相关分析 (CCA) 将 EEG 信号分类为相应的命令类,并使用信息传输速率 (ITR) 来确定效果。实验结果表明,由于 CCA 的分类准确率高,所提出的 SSVEP 刺激会产生 EEG 信号。这用于控制电动轮椅沿特定路径行驶。同步定位和地图绘制 (SLAM) 是本研究中用于轮椅系统的机器人操作软件 (ROS) 平台中可用的地图绘制方法。