摘要 — 高位脊髓损伤大大降低了伤者的生活质量。各种系统试图以各种单模或多模设计来连接受伤后仍然完整或残留的能力,以补偿受到严重影响的活动能力。口内感应舌计算机接口 (ITCI) 旨在为计算机和辅助设备提供实时离散和比例控制,并满足四肢瘫痪患者的特殊要求。在一项短期培训研究中,向两名四肢瘫痪患者演示了 ITCI 对轮椅控制的操作。此外,两名健全人也参与了这项研究。对于每位参与者,通过报告沿车道的速度和撞到的障碍物数量,比较了使用 ITCI 驾驶 Permobil C500 的能力与使用操纵杆(一种情况下是口操纵杆)沿两条 39 米的不同车道驾驶轮椅的能力。车道由 90 0、360 0 和由线性段连接的复杂机动段组成。 ITCI 的特点是口含两个电感传感器垫、驱动电子设备和电池。口含器通过牙齿固定器固定在参与者口腔的上颚。舌头上附有一个类似穿刺器的激活装置。数据通过有线接口无线传输到控制轮椅的中央单元。在所有参与者中,使用 ITCI 驾驶时,A 或 B 车道的平均速度达到最大值 0.42 至 0.74 米/秒,相当于使用操纵杆驾驶时速度的 41% 至 71%。
许多受身体挑战的人面临着自由操纵的问题。椅子是最常见的设备,习惯于为身体挑战的人提供质量。但是,今天可用的大多数椅子,尤其是廉价的手动椅子,都需要人力援助才能四处走动。即使对于电动机椅,仍然需要用户的帮助才能使用控制器或按下按钮,以管理电动电动椅的运动。失去了手或有问题的人(例如脊髓灰质炎患者)似乎没有准备好驾驶椅子运动的许多用户。因此,他们本身无能为力。为了解决这个问题,其他建设性的方式是通过损害大脑来专门控制椅子的动作。这项技术可以使大多数人能够自行浏览椅子。因此,这可能会带来特别高的影响,尤其是对受挑战的人。
摘要 辅助机器人在复杂的环境中运行,并有人类在场,但它们之间的交互可能受到多种因素的影响,从而导致不良结果:错误的传感器读数、意外的环境条件或算法错误只是可能出现的场景的几个例子。当用户的安全不仅是一种选择,而且必须得到保证时,一个可行的解决方案是依靠人机回路方法,例如,监控机器人在执行任务期间是否执行了错误操作,或者环境条件是否影响人机交互期间的安全,并相应地提供反馈。本文提出了一种人机回路框架,以实现电动和传感器(智能)轮椅的安全自主导航。在室内场景中,轮椅向所需目的地导航时,轨迹上可能存在的问题(例如障碍物)会在用户注意到时产生脑电图 (EEG) 电位。这些电位可用作导航算法的额外输入,以修改轨迹规划并确保安全。该框架已经通过使用在 ROS 和 Gazebo 环境中实现的轮椅模拟器进行了初步测试:对文献中已知基准的 EEG 信号进行分类,传递到自定义模拟节点,并提供给导航堆栈以执行避障。
摘要。轮椅是由发现挑战行走的个人使用的。在开发轮椅上采用了各种方法,以适应使用可用技术的物理残疾的需求。与已经存在的轮椅相关的问题很难在限制和约束的空间以及可以实现的运动程度上进行操作。该项目的目的是开发一个智能的全向控制轮椅。该系统不仅适用于家庭用途,还可以用于体育和医院。轮椅的移动是通过Web应用程序通过无线保真性通信控制的。所采用的方法包括使用超文本标记语言和JavaScript编程语言设计Web应用程序接口,硬件部分由Raspberry Pi 3模型B组成,该模型B,使用Python编程语言编程。然后,将软件和硬件部分集成在一起以形成一个完整的系统。系统的主要优点是,它允许轮椅的用户通过限制和约束的空间操纵,并远程控制轮椅。所考虑的性能度量是障碍物检测单元在检测砖墙,金属和木材方面的准确性,以及轮椅对Web应用程序移动命令的响应时间。砖墙,金属和木材的平均检测精度分别为87.37%,94.43%和83.57%。轮椅对移动命令的平均响应时间为1.04秒。
摘要:自动轮椅在仪器和控制方面发展起来,解决了身体残疾人的移动性问题。通过这项工作,旨在建立自动轮椅和原型的仪器和控制方法的背景,以及每个类别中的分类。为此,对2012年至2019年之间发表的文章进行了对专业数据库的搜索。在其中,根据包含和排除标准选择了97个文件。针对这些文章提出了以下类别:(a)轮椅仪器和控制方法,其中有一些系统可以实施微电机力学传感器(MEMS),表面肌电图(SEMG),电视学(EOG),电视学(EOG),电脑术(EEG)和语音认识系统; (b)轮椅仪器,其中包括发现障碍物检测系统,人工视觉(图像和视频)以及导航系统(GPS和GSM)。本综述中发现的结果倾向于使用EEG信号,头部移动,语音命令和算法以避免障碍。最常用的技术涉及使用经典控制和阈值来移动轮椅。此外,讨论主要基于用户的特征和控制类型。总而言之,这些文章在其设计中表现出了现有的局限性和可能的解决方案,并向物理残障社区告知了这一领域的技术发展。
简介:由于脊髓损伤(SCI)引起的截瘫患者执行手动轮椅(MWC)推进,以促进功能迁移率以进行日常活动。然而,由于MWC设置不足以及疼痛和上肢损伤(UL)引起的推进效率低下可能导致用户移动性降低。目的:通过综合审查的方法,试图识别和评估与SCI截瘫用户MWC中推进效率相关的因素。方法:我们在PubMed,Lilacs和Scielo中选择了索引研究,用于推进2008年至2018年间SCI用户的生物力学。结果:在综述中包括的10项研究中,两项研究被归类为III-2级,为第四级证据。与推进效率相关的因素被确定为:非义压力矩;恢复阶段UL的速度;手在发行期间的位置;靠背的大小;保持体重;日常活动和肩部内收益的水平;推进的强度; UL和SCI时间的方向。结论:关于UL的周期和推进模式,MWC设置,用户特征以及疼痛和伤害的证据被证明是与SCI瘫痪者MWC的推进效率有关的因素。
摘要 大多数残疾人在日常生活中通常依赖他人,尤其是在从一个地方移动到另一个地方时。对于轮椅使用者来说,他们不断需要有人帮助他们移动轮椅。通过使用轮椅控制系统,他们变得更加独立。本研究项目的目的是为身体残疾人士设计和制造语音控制轮椅。轮椅控制系统部署语音识别系统来触发和控制其所有动作。它集成了微控制器、通过谷歌助手的语音识别、电机控制接口板来移动轮椅。通过使用该系统,用户只需通过谷歌助手说话和命令即可操作轮椅。基本功能过程包括前进和后退、左转和右转以及停止。它使用由 Microchip Technology 制造的 PIC 控制器来控制系统操作。它通过谷歌助手与语音识别进行通信,并使用从 Ada-fruit 云中保存为数字系统的命令。给出语音,然后确定相应的输出命令来驱动左右电机。为了完成这项任务,编写了一个汇编语言程序并将其存储在控制器的内存中。关键词:语音控制轮椅,肢体残疾人士 1. 引言