Lubrizol Advanced Materials, Inc.(“Lubrizol”)希望您对此建议的配方感兴趣,但请注意,这只是一种代表性配方,并非商业化产品。在适用法律允许的最大范围内,Lubrizol 不作任何陈述、保证或担保(无论是明示、暗示、法定或其他形式),包括任何关于适销性或特定用途适用性的暗示担保,或关于任何信息的完整性、准确性或及时性的暗示担保。Lubrizol 认为此配方所基于的信息和数据是可靠的,但配方尚未经过性能、功效或安全性测试。在商业化之前,您应彻底测试该配方或其任何变体,包括配方的包装方式,以确定其性能、功效和安全性。您有责任获得任何必要的政府批准、许可或注册。本文中包含的任何内容均不得视为未经专利所有者许可而实施任何专利发明的许可、建议或诱导。与此配方相关的任何索赔可能并非在所有司法管辖区都获得批准。安全处理信息不包括安全使用所需的产品安全信息。操作前,请阅读所有产品和安全数据表以及容器标签,了解安全使用和物理及健康危害信息。您可从路博润代表或经销商处获取此配方路博润产品的安全数据表。
在本文中,我们使用非线性滑模控制方法处理四旋翼飞行器的稳定和跟踪问题。首先,借助牛顿-欧拉形式,提出了四旋翼飞行器的动态非线性模型,其中考虑了不同的物理现象和气动力及力矩。然后基于 Lyapunov 理论设计滑模控制器来稳定和跟踪四旋翼飞行器的姿态和位置。进行了几次模拟结果,以显示所提出的建模和非线性控制方法的有效性。即将进行的工作将使用基于元启发式的方法调整和优化所有 SMC 参数。此外,还将研究设计的 SMC 方法的硬件在环 (HIL) 联合仿真。
分配访问权限后,访问权限持有者将有权根据《国家电力规则》(NER)第 5 章协商接入访问权限网络的连接,但须遵守 EII 法规的条款修改;4 例如,作为本轮招标流程的一部分,将提供与连接查询中包含的信息等同的连接相关信息(代替 NER 连接查询)。分配访问权限后,基础设施规划人员将通知 Transgrid(访问权限网络的注册网络服务提供商)成功的访问权限持有者。然后,Transgrid 将被要求向访问权限持有者提供与 NER 下的连接查询响应等同的信息,以使访问权限持有者能够提出连接申请(有关更多信息,请参阅第 4 节)。
简介:预测肿瘤学、种系技术和自适应无缝试验是治疗致命癌症的有希望的进展。然而,昂贵的研究、监管障碍和因 COVID-19 大流行而加剧的结构性不平等阻碍了这些疗法的获得。方法:为了满足对快速和更公平地获得致命癌症突破性疗法的全面战略的需求,我们与加拿大、欧洲和美国的 70 名肿瘤学、临床试验、法律和监管流程、患者权益、伦理、药物开发和卫生政策专家进行了一项改良的多轮德尔菲研究。半结构化民族志访谈(n = 33)用于确定问题和解决方案,参与者随后在调查(n = 47)中对其进行了评估。调查和访谈数据被共同分析,以完善面对面圆桌会议的主题,26 名参与者在会上审议并起草了系统变革建议。结果:参与者强调了患者获取新型疗法的主要问题,包括完成资格要求或参与试验所需的时间、成本和交通负担。只有 12% 的受访者对当前的研究系统表示满意,其中“患者获取试验”和“研究批准延迟”是最受关注的问题。结论:专家一致认为,应开发以公平为中心的精准肿瘤学沟通模式,以改善患者获取自适应无缝试验、资格改革和即时试验激活的机会。国际倡导团体是动员患者信任的关键因素,应参与研究和治疗批准的每个阶段。我们的结果还表明,政府可以通过让研究人员和付款人参与生态系统方法,以应对危及生命的癌症患者面临的独特临床、结构、时间和风险收益状况,从而促进更好、更快地获得救命的疗法。
在本文中,我们使用非线性滑模控制方法处理四旋翼飞行器的稳定和跟踪问题。首先,借助牛顿-欧拉形式,提出了四旋翼飞行器的动态非线性模型的开发,该模型考虑了不同的物理现象和气动力和力矩。然后基于 Lyapunov 理论设计滑模控制器来稳定和跟踪四旋翼飞行器的姿态和位置。进行了几次模拟结果,以显示所提出的建模和非线性控制方法的有效性。即将开展的工作将使用基于元启发式的方法调整和优化所有 SMC 参数。此外,还将研究设计的 SMC 方法的硬件在环 (HIL) 联合仿真。
I. 引言燃料电池(FC)是一种将氢化学能转化为电能的装置,可用于从移动和固定电源系统到便携式设备等各种应用。FC 的工作原理早在 1839 年就被发现,但直到最近二十年,该领域的研究活动才显着增加,提高了 FC 的灵活性和可靠性 [1]。促使 FC 发展的最重要因素之一是化石燃料燃烧对环境的严重影响。考虑到可以利用可再生能源(太阳能、风能、地热能等)通过水电解生产氢气,聚合物电解质膜 (PEM) 燃料电池成为减少对化石燃料依赖的最清洁和最有前途的替代品之一 [2]。该领域的改进需要跨学科工作和许多领域新技术的开发。最重要的问题之一与开发系统地处理干扰和模型不确定性的稳健控制策略有关。例如,在可变负载跟踪期间,针对电池内部燃料-氧化剂协调问题的有效控制算法可以避免瞬时功率下降和电池膜的不可逆损坏。然而,从控制的角度来看,燃料电池堆代表着一项重大挑战,因为它们相关的子系统存在相互冲突的控制目标和复杂的动态[3]。例如,九阶非线性模型用于描述基于氢-空气供给堆的发电系统。在这种模型中,状态相互作用通常通过以下方式建模
模块化结构和功能在生物学中无处不在,从动物体和大脑的组织到生态系统的规模。然而,模块化的机理尚不清楚。在这里,我们介绍了峰值选择的原理,该过程纯粹是局部相互作用和光滑的梯度可以导致全球模块化组织。可以从平稳的全局梯度中导致不连续模块边界的自组织,从而统一了形态发生的位置假设和图灵模式形成假设。应用于大脑的网格细胞网络,峰选择会导致具有离散间隔空间周期的功能不同模块的潮流出现。应用于生态系统,该过程的概括导致离散的系统级别的壁ni。动力学表现出对系统大小和“台式鲁棒性” [1]的新自我缩放,从而使模块出现和模块属性对大多数参数不敏感。此外,峰选择赋予模块内的鲁棒性。即使在单个网格细胞模块中,它也对连续吸引力动力学的微调需求进行了评估。它做出了一个独立于细节的预测,即网格模块周期比率应近似相邻的整数比率,并提供迄今为止最准确的数据匹配。其他可测试的预测有望弥合生理学,连接组学和转录。总的来说,我们的结果表明,与低信息全局梯度相结合的局部交互可以驱动强大的全局模块出现。
这些资金将用于推动亚太地区储能行业的持续增长。新加坡,2024 年 5 月 7 日——总部位于新加坡的创新储能解决方案提供商 VFlowTech 欣然宣布其 A-2 轮融资已完成,领投方是 PSA International (PSA) 的外部创新和企业风险投资部门 PSA unboXed。这项投资标志着 VFlowTech 推动世界走向净零排放的使命中的一个重要里程碑,并计划扩展到混合储能解决方案领域。凭借这一结果,PSA 将与 Real Tech Holdings、SEEDS Capital、Wavemaker Partners、Sing Fuels、İnci Holding、Pappas Capital、Carbon Zero Venture Capital 和其他投资者一起支持 VFlowTech 向混合长时储能解决方案迈进。 PSA unboXed 技术与可持续发展解决方案负责人 Alvin Foo 先生表示:“凭借这项投资,PSA unboXed 期待利用 VFlowTech 在长时储能解决方案方面的深厚专业知识和资源,同时增强我们在港口地区电池储能系统和智能电网管理系统方面的能力。VFlowTech 致力于开拓储能技术进步,这与 PSA 的可持续发展战略、脱碳历程和长期净零排放目标完美契合。” “净零排放是一项复杂的挑战,需要多方合作。迫切需要足够的基础设施来支持多种替代清洁能源技术的商业化。此次合作标志着双方共同致力于推进可持续能源解决方案,并将有助于开辟能源存储生态系统创新与合作的新途径”,VFlowTech 联合创始人 Avishek Kumar 博士表示。 以更强大的能源存储解决方案为更绿色的新加坡提供动力 根据新加坡 2024 年预算,很明显,更绿色的未来在于采用同样高效和适应性强的经济实惠、可持续和创新的解决方案。虽然新加坡在太阳能领域取得了长足的进步,但能源存储是实现净零排放的重要组成部分。太阳能和风力发电厂虽然是可再生能源,但在没有阳光或没有风的时候仍然是间歇性的能源。VFlowTech 电池可以确保始终提供可靠的电力供应。 2023 年 11 月,VFlowTech 助力乌敏岛从柴油转向更可靠、更实惠的能源。该岛配备了太阳能电池板和 VFlowTech 的电池,使其更加可靠,间歇性更少,而间歇性是可再生能源的主要缺点。
FABrIC 是一个为期五年、耗资 2.2 亿美元的项目,旨在帮助确保加拿大在半导体领域的未来。半导体为数字经济提供动力,是经济增长的推动力:2022 年,半导体行业的价值超过 5000 亿美元,预计到 2030 年将达到 1 万亿美元。然而,由于疫情和最近的地缘政治变化导致供应中断,过去几年全球半导体格局发生了重大变化。世界各国政府已承诺进行前所未有的投资,以支持其半导体行业、在岸制造并刺激战略技术的研究和产品开发。加拿大也有机会巩固我们在全球半导体市场的地位,并从该领域的增长中受益。为了参与竞争,我们认为我们必须投资于战略领域,以加速加拿大已经拥有强大能力和全球认可的技术和产品的开发和商业化。
兽医考虑抗菌管理,以保持抗菌药物的有效性和可用性。3 抗菌耐药性的出现促使人们研究替代或辅助治疗策略以减少抗菌药物的使用,包括再生疗法,如基于间充质基质细胞 (MSC) 的治疗和血小板裂解物。4–8 MSCs 具有固有的抗菌和免疫调节特性,通过抗菌肽和细胞因子分泌来招募单核细胞/巨噬细胞和中性粒细胞。9 –23 该研究小组和其他研究小组先前的研究表明,这些特性可以通过在体内给药之前用 Toll 样 (TLR) 和 Nod 样受体配体体外调节 MSCs 来增强,6、7、24、25 导致对细菌生长、中性粒细胞细菌吞噬作用和免疫调节细胞因子分泌的直接抑制增加,这在诱发啮齿动物金黄色葡萄球菌生物膜和犬类自然感染模型中均得到证实。8 这些发现鼓励进一步研究大型动物(马)耐甲氧西林金黄色葡萄球菌化脓性关节炎模型中的免疫调节细胞疗法。5 马自然发生的脓毒性关节炎的发展已得到充分证实,发生在穿透性创伤、滑膜内注射、关节镜检查或小马驹的血源性败血症之后。26–30 此外,马临床前模型对于患有关节感染的人类具有转化意义,因为与许多其他实验室物种相比,马在软骨厚度、关节负荷力和关节体积方面与人类更相似。31 我们之前证明,与仅用万古霉素 (VAN) 治疗关节相比,用 TLR-3 激动剂聚肌苷酸:聚胞苷酸 (pIC) 加万古霉素 (TLR-MSC-VAN) 激活的 MSCs 治疗脓毒症关节可显著降低滑液和滑膜中的细菌数量以及滑液中的促炎细胞因子 IL-18 和 IL-6。5 重要的是,在接受 TLR-MSC-VAN 治疗的马中,因疼痛和炎症而导致的跛行明显减少。重复 IA 注射在临床上耐受性良好,表明这种治疗方法可以在临床实践中安全实施。报告的结果表明,有必要进一步研究免疫调节细胞疗法,以改善抗菌素耐药性感染的治疗。询问然而,迄今为止,这项工作的一个局限性是,TLR-MSC 疗法在马关节体内发挥作用的作用机制尚未完全阐明,包括评估接受和未接受 MSC 疗法治疗的滑膜组织中与免疫细胞浸润相关的基因表达谱。因此,我们进行了额外的研究,利用最近推出的 Nanostring 基因表达技术,通过一个旨在评估马免疫和软骨反应的靶向面板,从机制上研究了之前报道的 TLR-MSC 疗法在马脓毒性关节炎模型中的临床效果。
