土星的卫星土卫二因卡西尼号太空飞船在其南极地区发现了被称为“虎纹”的明显线性结构,该结构喷出气体和冰粒羽流而备受关注。据信,这颗小型卫星(直径 504 公里)有一个多孔岩石核心和一个冰壳,中间被全球地下咸水海洋隔开。潮汐加热可能有助于推动卫星内部的化学反应,这使得它成为一个非常有希望的候选者,那里可能存在适合生命形成的条件。这使得土卫二成为未来任务的主要目标。由于土星引起的强烈引力扰动、土卫二的较高引力矩以及土星其他卫星的额外扰动,土卫二周围人造卫星的动态环境极其复杂。因此,寻找自然稳定轨道绝非易事。极地轨道对于进一步研究虎纹地区和绘制全球地下海洋图非常有用。
在2020年4月,内阁批准了监管修正案,以使艾伯塔省能源调节器(AER)能够针对需要借用材料建造道路,垫子等的石油和天然气运营商发出表面材料处置(在某些条件下)。支持能源活动。在四月的监管修正案之前,石油和天然气运营商可以向AER申请以获得临时现场授权(TFA)或向艾伯塔省环境和公园(AEP)申请,以供更大的发掘供借用物质需求。该系统无意间偏爱多个较小的TFA,其中一个较大的坑可能更合适。多个小坑而不是一个较大的坑的累积影响会导致整体上更大的土地基础分裂,终端土地使用的损失或转换(例如,森林覆盖到水填充水坑),延迟到达最终的回收或最终土地使用状态,以及潜在的累积累积工业足迹。调节框架的变化旨在解决这些差距,并确保表面材料提取不管调节器如何公平且一致。石油和天然气行业将这项工作确定为减少繁文tape节的机会。管辖权更改
摘要 隧道掘进机施工过程中涉及的主要问题之一是尾部间隙注浆。该间隙位于隧道衬砌外径和开挖边界之间,并用高压注浆材料填充。本文研究了 FLAC3D 软件中三种不同的间隙注浆建模方法,特别关注注浆材料硬化过程的影响。在第一种方法中,将注浆在注入过程中模拟为液体,考虑 TBM 的推进及其硬化时间,将注浆特性转变为固体注浆的性质。在第二种方法中,在模型中将注浆材料从注入开始时就视为具有固体注浆性质,忽略液相。在第三种方法中,不考虑模型几何中的回填注浆区域,只在盾构末端和已安装管片后方施加注入压力。根据最大地表沉降评估了这三种方法的有效性。这三种方法估算的表面沉降量不同,但第一种方法的结果更接近监测数据。同样作为敏感性分析,在这项工作中,我们研究了液体和固体灌浆材料的弹性模量对表面沉降量的影响,这有助于更准确地了解灌浆混合物的影响。
摘要 隧道设计和施工涉及多个专业,可为创新和多学科研究提供课题。在这一领域,结构工程和岩土工程等学科之间可能会出现强有力的融合。为此,跨学科研究应主要集中于解决土-结构相互作用的边界值问题。本文从不同尺度概述了该领域当前的研究趋势,从单个土壤元素的行为开始,处理地面与隧道之间的相互作用,最后探讨地下基础设施与建筑环境之间的相互作用。 关键词:土-结构相互作用、地下建筑、隧道、城市地区、抗震性能
VK1072C 是一个最多支持 72 点( 18SEGx4COM )的 LCD 驱动器,它可以由软 件配置成 1/2 、 1/3 偏置电压( bias ),也可以配置成 1/2DUTY ( 2COM )、 1/3DUTY ( 3COM )或者 1/4DUTY ( 4COM )。 LCD 驱动时钟产生于系统时 钟, LCD 驱动时钟的频率总是 256Hz 。
VK1088B 是一个最多支持 88 点( 22SEGx4COM )的 LCD 驱动器,它可以由软 件配置成 1/2 、 1/3 偏置电压( bias ),也可以配置成 1/2DUTY ( 2COM )、 1/3DUTY ( 3COM )或者 1/4DUTY ( 4COM )。 LCD 驱动时钟产生于系统时 钟, LCD 驱动时钟的频率总是 256Hz 。
摘要:定性和定量评估评估液体储罐的结构脆弱性。液体储罐通常是在坚硬土壤的区域建造和操作的,以最大程度地减少构成影响。但是,其中许多关键结构都在具有软土的沿海地区。这项研究进行的研究需要在各种条件下准确地对有限元的方法进行精确模拟半植物混凝土储罐的地震行为,包括改变水位和土壤特性。该研究通过动态分析矩形半埋水罐进行了流体结构和土壤 - 结构相互作用,并比较其不同的参数。它还确定了储罐中液体泄漏概率的敏感区域。将建模与日本振动能力诊断表中的定性评估进行了比较。结果表明,与膨胀关节相邻的壁中的拉伸应力大于在所有情况下壁中的相应应力。在土壤类型的动态分析中,表面的压力随水高的增加而增加。对定量和定性评估结果的比较表明,储罐可能在膨胀关节中的软土中泄漏。
本文件基于软银公司 (“我们”或“公司”) 截至本文撰写时所掌握的信息以及其认为合理的假设。本文所含的非历史事实陈述,包括但不限于我们的计划、预测、战略和对我们业务和财务前景的看法,均属于前瞻性陈述。前瞻性陈述通常包括“目标”、“计划”、“相信”、“希望”、“继续”、“预期”、“旨在”、“打算”、“将”、“可能”、“应该”、“会”、“可能”、“预期”、“估计”、“项目”等词语或类似词语或术语或其否定词。这些前瞻性陈述并不代表我们或我们的管理层对未来业绩或任何特定结果的任何保证,并受各种风险和不确定性的影响,包括但不限于一般经济状况、日本电信市场的状况、我们采用新技术和商业模式的能力、与其他移动电信提供商的竞争、我们改善和维护电信网络的能力、我们在开展业务时对第三方的依赖,包括软银集团公司及其其他子公司和关联公司、我们的主要供应商和其他第三方、与并购和其他战略交易有关的风险、与信息安全和处理个人身份信息有关的风险、其他法律法规的实质和解释的变化以及其他重要因素,这些因素可能会导致实际结果与任何前瞻性陈述中明示或暗示的结果存在重大差异。本公司明确表示不承担更新、修订或补充任何文件中或一般在法律或证券交易所规则允许的范围内的任何前瞻性陈述的义务或责任。使用或依赖本材料中的信息风险自负。有关公司及其子公司和联营公司以外的公司的信息均引自公共来源和其他来源,我们既未核实信息,也不对信息的准确性负责。本文提供的有关公司、愿景基金和软银集团公司投资组合公司和投资的某些合资企业和合作的信息是在主观基础上选择的,仅供说明之用,并不代表所有此类合作或合资企业的完整列表。软银集团公司、公司和愿景基金在其投资和投资组合公司运营方面都有不同的战略和目标。任何合资企业都将按照本文所述的条款完成,或完全完成,也不保证合资企业将取得成功。所有此类计划都受不确定性和风险以及投资者同意和监管部门批准的影响。视情况而定。对此类投资组合公司和投资的提及不应视为对任何特定投资的推荐。
自20世纪40年代问世以来,晶体管就不断改变着我们的生活。作为逻辑门和集成电路(芯片)的核心元件,晶体管无疑在推动计算机、智能手机、平板显示器、物联网乃至所有电子或电气系统的发展方面发挥着无与伦比的作用。过去几十年来,主流晶体管通常由硅材料和金属氧化物等无机半导体制成,有利于实现高迁移率、快速开关速度和优异的稳定性。因此,硅晶体管和金属氧化物半导体场效应晶体管被广泛应用于电子应用。然而,尽管这些晶体管的制造规模要小得多以满足摩尔定律的预测,但它们却非常坚硬,并且几乎接近速度和功耗的基本极限。由于未来对具有机械灵活性/坚固性和低功耗的晶体管的需求,功能材料、设备配置和集成处理技术的创新以促进从刚性设备到柔软、耐用和生物相容性的设备的演变势在必行。1
摘要 Prime editing 是一种近期出现的精确基因组编辑方式,其多功能性为包括靶向基因疗法开发在内的广泛应用提供了前景。然而,其优化和使用的一个突出瓶颈是难以将大型 prime 编辑复合物递送到细胞中。在这里,我们证明将 prime 编辑构建体包装在腺病毒衣壳中可以克服这一限制,从而在转化和非转化的人类细胞中实现强大的基因组编辑,效率高达 90%。使用这种不依赖细胞周期的递送平台,我们发现 prime 编辑活动与细胞复制之间存在直接相关性,并揭示了准确的 prime 编辑事件与不需要的副产物之间的比例可能受靶细胞环境的影响。因此,腺病毒载体颗粒允许在人类细胞中有效地递送和测试 prime 编辑试剂,而与它们的转化和复制状态无关。本文整合的基因传递和基因编辑技术有望帮助研究在众多实验环境中以及最终在体外或体内治疗环境中进行主要编辑的潜力和局限性。简介基于序列可定制的向导 RNA (gRNA) 和 CRISPR 相关 (Cas) 核酸酶的可编程核酸酶是强大的基因组编辑工具 (1,2)。然而,除了脱靶诱变 (3-9) 之外,可编程核酸酶通常会因非法重组过程修复双链断裂 (DSB) 而产生复杂的靶等位基因破坏和大规模基因组重排 (10,11)。因此,最近的基因组编辑发展包括从 DNA 切割发展到基于切口 Cas 蛋白本身 (12–14) 的 DNA 非切割技术,或基于这些与 DNA 修饰部分融合的 RNA 可编程切口酶,例如碱基编辑器和最近的 prime editors (15,16)。Prime 编辑允许安装任何单个碱基对替换以及明确定义的小插入或删除,同时不需要 DSB 或供体 DNA 底物 (15)。Prime editors 由扩展的 gRNA 和 Cas9 H840A 切口酶组成,它们与工程逆转录酶 (RT) 融合,分别命名为 pegRNA 和 PE2 (补充图 S1A)。pegRNA 由 3' 端共价连接到编码目标编辑的 RT 模板和 RT 引物结合位点 (PBS) 的 gRNA 形成。位点特异性基因组 DNA 切口产生 3' 端 DNA 瓣,经 PBS 退火后,在 RNA 模板上引发 RT 介导的 DNA 合成。PE2 和 PE3。DNA 拷贝杂交至互补靶 DNA 后,编辑最终通过连续链解析反应整合到基因组中(补充图 S1B)。Prime 编辑有两种主要方式,即前者系统需要传递 PE2:pegRNA 复合物;后者依赖于这些复合物与传统 gRNA 一起转移。在 PE3 系统中,gRNA 指导的未编辑 DNA 链切口促进了使用编辑链作为修复模板(补充图 S1B)。尽管 Prime 编辑原理具有巨大的潜力和多功能性,但仍存在一些需要识别、仔细评估和解决的特定缺陷。大型的 Prime 编辑核糖核蛋白复合物由 ∼ 125 个核苷酸长的 pegRNA 和由 6.3 kb ORF 编码的 238 kDa 融合蛋白组成,这带来了巨大的生产和交付问题。事实上,生产足够数量的 >100 kDa 蛋白质尤其具有挑战性。此外,尽管病毒载体是最有效的基因组编辑工具递送系统之一 (17),但最常用的平台基于 ∼ 15 nm 腺相关病毒 (AAV) 颗粒,由于其包装容量有限(∼ 4.7 kb)(17),不适合转移全长 Prime 编辑序列。完全病毒基因删除的腺病毒载体(也称为高容量腺病毒载体),以下称为腺载体颗粒 (AdVP),聚集了一组有价值的特征,即; (i) 大包装容量(即高达 36 kb),(ii) 严格的游离性,(iii) 高遗传稳定性;(iv) 容易的细胞趋向性改变和 (v) 高效转导分裂和静止细胞 (17–21)。在这里,我们研究了定制这些 ∼ 90 nm 生物纳米粒子用于全长主要编辑组件的一次性转移的可行性和实用性,并且由于潜在或影响主要编辑结果的细胞过程基本上是未知的,利用后一个特性来研究细胞周期对这种位点特异性 DNA 修饰原理的作用。材料和方法 细胞