摘要 液晶弹性体是一种将液晶的各向异性与聚合物网络的弹性相结合的活性材料。液晶弹性体在外界刺激下表现出显著的可逆收缩和伸长能力,使其在软机器人、触觉设备、形状变形结构等多种应用方面具有广阔的应用前景。然而,液晶弹性体主要依赖加热作为驱动刺激,限制了它们的实际应用。这一缺点可以通过加入在各种刺激下能产生热量的填料来有效解决。液晶弹性体复合材料的最新进展大大扩展了液晶弹性体的应用潜力。在这篇小型评论中,我们介绍了采用液晶弹性体复合材料的软致动器的设计策略,然后详细探讨了光热和电热液晶弹性体复合材料作为突出的例子。此外,我们还展望了液晶弹性体复合材料领域的挑战和机遇。
Luca Tubiana 1 , 2 , ∗ , Gareth P. Alexander 3 , Agnese Barbensi 4 , Dorothy Buck 5 , Julyan HE Cartwright 6 , 7 , Mateusz Chwastyk 8 , Marek Cieplak 8 , Ivan Coluzza 9 , Simon Čopar 10 , David J. Craik 11 , Marco Di Stefano 12 , Ralf Everaers 13 , Patrícia FN Faísca 14 , 15 , Franco Ferrari 16 , Achille Giacometti 17 , 18 , Dimos Goundaroulis 9 , 19 , Ellinor Haglund 20 , Ya-Ming Hou 21 , Nevena Ilieva 22 , Sophie E. Jackson 23 , Aleksandre Japaridze 24 , Noam Kaplan 25,Alexander R. Klotz 26,Hongbin Li 27,Christos N. Likos 28,Emanuele Locatelli 28,29,30,TeresaLópez-León31,Thomas Machon 32,Cristian Micheletti 33,Davide Michieletto 34,34,35,35,Antti niiem 33,33 39,Francesco Nitti 40,Enzo Orlandini 29,30,Samuela Pasquali 42,Agata P. Perlinska 39,Rudolf Podgornik 43,44,45,Raffaello Potestio 1,2拉夫尼克 10,48, 伦佐·里卡 49,50, 克里斯蒂安·M·罗沃 51,52, 安杰洛·罗萨 33, 扬·斯姆雷克 28, 安东·苏斯洛夫 53, 安德烈·斯塔西亚克 54,55, 达尼埃莱·斯蒂尔 40,41, 乔安娜·苏乌科夫斯卡 39, 皮奥特·苏乌科夫斯基 56, 德威特·L·萨姆纳斯 57, 卡斯滕·斯瓦内博格 58, 皮奥特·希姆扎克 56, 托马斯·塔伦齐 59, 鲁伊·特拉瓦索 60, 彼得·维尔瑙 61, 迪米特里斯·弗拉索普洛斯 62,63, 普里莫日·齐赫尔 10,48, 斯洛博丹·尤默 10,48
尊敬的夫人司法W.A.贝克于2021年8月13日在不列颠哥伦比亚省温哥华提供。2016年10月25日,MK的原告是被告GC的后置乘客。被告承认责任。K先生在事故中遭受了软组织伤害和脑震荡。他声称这些伤害导致持续的慢性疼痛和相关的心理伤害。在事故发生时,K先生35岁。他嫁给了MM,并育有两个8岁和4岁的儿子。K先生享有身体健康,并过着积极的生活,包括与家人露营,常规的越野公路旅行,骑自行车,散步和去健身房。他非常注重家庭和努力工作。他帮助父亲进行了房屋翻新。他和孩子们一起度过了时光,并与妻子有着充满爱意的关系。M女士作证说,K先生在事故发生前没有严重的身体或情感问题,他“很高兴,有很多项目和想法,并且总是能够胜任”。在事故发生时,K先生通过自己的公司Cyber Node Tech Computers(“网络节点”)担任计算机顾问,并在一家名为CIH进行在线汽车租赁预订的公司工作。CIH也是网络节点的最大客户。CIH在旅游场(主要是夏威夷)提供了汽车租赁预订。K先生与R先生R先生建立了密切的友谊,正是R先生鼓励K先生创立自己的公司。2009年1月开始网络节点。K先生是CIH的十二名员工之一。R先生和K先生的经理KS都对原告及其作为客户服务代表和计算机技术人员的能力表示赞赏。R先生和K先生的经理KS都对原告及其作为客户服务代表和计算机技术人员的能力表示赞赏。
1在软培养基中引导弹性波的基本面6 1理论方面。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 1.1线性弹性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 1.2散装波。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 1.3羔羊波。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>12 2实验方法。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>16 2.1样品制备。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>16 2.2设置。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。16 2.3单色激发和频镜检查。。。。。。。。。。。。。。。。。。。17 2.4提取复杂位移图。。。。。。。。。。。。。。。。。。18 2.5首先观察。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 3从盘子到条带。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 3.1自由接口处的反射。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 3.2条带中的挠性模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 3.3面内引导波:与羔羊波的类比。。。。。。。。。。。。。。。。23 3.4分散关系:关键物理特征。。。。。。。。。。。。。。。。。。。。25 3.5软带中的实验测量。。。。。。。。。。。。。。。。。。。。26 3.6流变学的影响。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 3.7调查Dirichlet边界条件。。。。。。。。。。。。。。。。。。。30 4结论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>33 div>
(*) We are grateful to Diana Bonfim, Kristle Cortés, Ralph De Haas, Alessandro Ferrari, José Fillat, Rogier Holtermans, Vahid Saadi, Amalia Stamate, and the conference and seminar participants at the Banco de España, IESE, IE University – Banco de España – Federal Reserve Bank of St. Louis Conference, Third CESC,AREUEA国际会议剑桥2023年,MPC货币政策银行分析工作组的研究研讨会,以及ESCB气候变化研究集群的第二次年度研讨会。所表达的观点是作者的观点,不一定反映了BancodeEspaña或欧洲系统的观点。Carles Vergara-Alert感谢西班牙科学,创新和大学的国家研究机构社会趋势研究所基金会的财政支持pgc2018-097335-a-i00)和nextgenerationeu/prtr(授予参考TED2021-131238B-i00)。Xavier Vives感谢西班牙科学,创新和大学的财政支持(授予参考PID2021-123113NB-i00)。(**)Banco deEspaña,C。DeAlcalá,48,28014西班牙马德里。电子邮件:laura.alvarezroman@bde.es。(***)Banco deEspaña,C。Dealcalá,48,28014西班牙马德里。电子邮件:sergio.mayordomo@bde.es。(****)IESE商学院,AV。皮尔森21,08034西班牙巴塞罗那。电子邮件:cvergara@iese.edu。(*****)IESE商学院,AV。皮尔森21,08034西班牙巴塞罗那。电子邮件:xvives@iese.edu。
抽象目的 - 在这种充满挑战的经济环境中,对陷入困境的经济体的过渡性企业家精神是一个相当新的概念。有时将正式的制度空隙作为造成困难经济中存在困难的原因,以及外在的冲击和其他动荡。在这项研究中,作者试图从经验和理论上贡献有关正式机构在过渡企业家开发的文化中填补的方式的方式。的确,在过渡经济体中,非正式机构需要增强正式机构,以控制腐败和当局其他不当行为。伊朗经济学家强调了这些基本的改革,以解决当前的困难,但自上而下的政策无法帮助过渡性企业家从该国的价值增加文化遗产中受益,以非正式地解决这一问题。为了研究这一点,定性研究方法用于解释过渡企业家的意识形态和伦理常规作为商业文化的成分,该成分可以建立替代正式机构的软法律。这有助于减少陷入困境经济体中正式机构的失效。设计/方法/方法 - 进行了主题分析,采访了关键的伊朗企业家和经济学家。也基于解释范式,对选定的文本进行了诠释学周期。的结果在整个相关文献中都得到了验证,以提出坚实的综合解释结果。发现 - 本文通过讨论过渡性企业家精神并导航陷入困境的经济来促进理论。在其中,将意识形态和伦理作为软法的成分(Newman and Posner,2018)作为进一步发展一种商业文化的基础,以填补了正式机构的空白。正式的 - 陷入困境经济体的非正式机构周期是企业家面临的主要困难(Peng and Luo,2000年)很重要,因为他们试图越来越多地增强向市场取向的发展(Bruton等,2008)。作者对过渡性企业家如何完成这种适应过程以及这些非正式机构确实对这些适应做出了反应的事实做出了贡献。另一个贡献是从文化的角度丰富有关机构的理论。知道这些事实有助于过渡性企业家,因为在受苦社区中,正式机构的职能对经济绩效具有重要影响(Amor OS,2009)。这项研究的贡献使政府领导人了解其对行业的行动的利弊。在这项研究中已经表征了它,它可以变成新的正式合法性(Ahlstrom等人,2008年)扎根腐败并帮助使经济踏上创新和新创造的途径。
通过合规运动,他们的环境,例如pH,[6,7]温度,[8-10]湿度,[11-15]和光[16-18]。他们发挥了巨大的潜力来满足人造肌肉,能量发电机,阀门,握手,游泳者和步行者领域的感测和致动要求。最近,据报道了溶剂蒸气驱动的软驱动器[19-21],并被视为人类 - 环境相互作用的有前途的设备。当前,分子吸收驱动的软致动器通常仅限于水,乙醇和丙酮蒸气,从而阻止其在晚期可穿戴应用中使用。最近对工程智能材料[22-25]及其作为软执行器的应用[26]表现出复杂的三维形状变形,已广泛审查以进行更全面的分析。简而言之,可以通过将非均匀的外部刺激应用于各向同性结构或通过各向异性执行器的概念来诱导3维(3D)变形,而后者是诱导可编程和可控制变形的有利选择。迄今为止,已经报道了一大批杂种结构,例如双层,梯度和图案结构。[27]在本文中,我们通过开发能够以受控方式精确曲线和扭曲的溶剂响应式仿生软执行器来利用这种方法。它们基于Su-8光敏环氧树脂的刚性微纹理,该树脂在聚二甲基硅氧烷(PDMS)薄膜的一个或两个侧面图案化,以模拟生物生物。[30–35]将所得的微型结构软致动器与双层执行器进行比较,该动力器由在挥发性有机化合物(VOC)下膨胀的活性层组成,并沉积在被动层的顶部。PDM属于硅胶类,是高性能溶剂响应式软动力执行器的出色候选材料,因为它固有的机械灵活性和耐用性,可反复变形。PDMS除了在暴露于VOC时肿胀的能力外,还表现出较高的热和湿度稳定性。实际上,PDM经常用于分析化学领域[28],例如作为水性培养基中采样分析物分子的有效矩阵材料。[29]尽管对于应用数量不需要PDM的肿胀,但它作为分子驱动的软设备的驱动材料提供了极好的选择性。据报道,基于PDM的聚合物构造的各种自我折叠微观结构已据报道,驱动机制,包括双层和表面张力驱动结构之间的热,磁性,应力不匹配。
从左上角进行:(a)PLA纳米纤维的SEM图像(Gomez-Bombarelli教授的组); (b)自我修复的纳米复合材料叶(MacFarlane教授的组); (c)混合矩阵膜的SEM图像(史密斯教授的组); (d)Sol-Gel Transition的例证(Olsen教授的小组); (e)粘弹性唾液线的结构(麦金莱教授的小组); (f)细胞粘附的模拟(Qi教授组); (g)两个DNA序列自发地分为两个区域,展示了自我分类行为(Jain教授的组); (H)带有共形聚酰亚胺涂层的单个碳纳米管(Hart教授组); (i)生物场效应晶体管的示意图(Furst教授的组)
IISD倡议 Carbon Sinus India(CMI)也是新德里的印度公共政策智囊团和研究所的领先,致力于保护我们唯一的星球,地球母亲,免受气候变化的全球变暖和其他不利影响。 cmi致力于发展印度的战略框架,以确定碳增长少,并促进了一系列计划和扩大的计划,努力通过创造协同作用,解决障碍,潜在的折衷和适当的金融(碳融资模型)来降低宏观和部门水平上经济的碳强度。 此外,CMI致力于提高印度的共识努力,并准备面对和应对全球气候变化适应和缓解挑战的国家准备。Carbon Sinus India(CMI)也是新德里的印度公共政策智囊团和研究所的领先,致力于保护我们唯一的星球,地球母亲,免受气候变化的全球变暖和其他不利影响。cmi致力于发展印度的战略框架,以确定碳增长少,并促进了一系列计划和扩大的计划,努力通过创造协同作用,解决障碍,潜在的折衷和适当的金融(碳融资模型)来降低宏观和部门水平上经济的碳强度。此外,CMI致力于提高印度的共识努力,并准备面对和应对全球气候变化适应和缓解挑战的国家准备。
1. 气候战略、生物多样性和自然资本的重要性日益增加;地缘政治问题和国际紧张局势的影响;以及信息安全和数据及个人信息保护的重要性日益增加,包括网络攻击和加强数据传输规定 2. 进一步推动数字技术的实际应用以及企业和社会 DX;创造新的生活方式价值和追求客户价值;全球规模的业务扩张;能源部门举措;以及与集团公司的协调和加强协同效应的重要性日益增加