到编辑软组织肉瘤(STS)代表了包括100多种不同亚型的非常异构的稀有肿瘤组[1]。 手术和新/辅助放射疗法代表了STS治疗的基石。 然而,尽管肿瘤最佳切除,但多达40%的患者会出现转移性复发,并死于疾病[1]。 阿霉素代表自1970年代以来患有晚期疾病患者的一线护理标准,尽管有几次尝试确定更好的治疗方法。 转移性疾病患者的总体生存期(OS)<18个月,在过去20年中仅适度改善[2]。 我们和其他人先前已经报道说,肿瘤组织的下一代测序(NGS)允许鉴定基因组畸变,并可能影响高达50%的晚期STS患者的潜力和个性化治疗[3,4]。 循环肿瘤DNA(CTDNA)的基因组分析越来越多地用于调整癌症患者的治疗。 的确,这种液体活检具有多个优点:无侵入性,减少周转时间以获得更快的结果,以及完全捕获肿瘤异质性景观的能力[5]。 本研究的目的是研究ctDNA分析在两种前瞻性精确医学研究中包含的大量晚期STS患者中的影响,并破译肉瘤的ctDNA分子景观。 他们的角色 -到编辑软组织肉瘤(STS)代表了包括100多种不同亚型的非常异构的稀有肿瘤组[1]。手术和新/辅助放射疗法代表了STS治疗的基石。然而,尽管肿瘤最佳切除,但多达40%的患者会出现转移性复发,并死于疾病[1]。阿霉素代表自1970年代以来患有晚期疾病患者的一线护理标准,尽管有几次尝试确定更好的治疗方法。转移性疾病患者的总体生存期(OS)<18个月,在过去20年中仅适度改善[2]。我们和其他人先前已经报道说,肿瘤组织的下一代测序(NGS)允许鉴定基因组畸变,并可能影响高达50%的晚期STS患者的潜力和个性化治疗[3,4]。循环肿瘤DNA(CTDNA)的基因组分析越来越多地用于调整癌症患者的治疗。的确,这种液体活检具有多个优点:无侵入性,减少周转时间以获得更快的结果,以及完全捕获肿瘤异质性景观的能力[5]。本研究的目的是研究ctDNA分析在两种前瞻性精确医学研究中包含的大量晚期STS患者中的影响,并破译肉瘤的ctDNA分子景观。他们的角色 -在2020年12月至2021年8月之间,有98例晚期ST患者被包括在两项正在进行的机构分子概况研究中(Bergonie Institute Propiling,BIP:NCT02534649; Gustave Roussy Propiling,Sting,Sting:NCT049322525)。
现代计算软组织力学模型有可能提供独特的,特定于患者的诊断见解。由于使用常规数值求解器进行机械仿真时,这种模型在临床环境中的部署受到限制。在临床相关时间范围内获得结果的另一种方法是使用计算有效的替代模型(称为模拟器)代替数值模拟器。在这项工作中,我们为软组织力学提出了一个模拟框架,该框架以两种方式基于传统方法。首先,我们使用图形神经网络(GNN)进行仿真。gnns自然可以处理给定患者的唯一软组织几何形状,而无需进行任何低阶近似。其次,模拟器以物理信息的方式进行训练,以最大程度地减少势能功能,这意味着训练不需要昂贵的数值模拟。我们提出结果表明,我们的框架可以为一系列软组织机械模型提供高度准确的仿真,同时预测比模拟器更快地进行了几个数量级。
核苷酸切除修复(NER)途径涉及三十多个蛋白质 - 蛋白质相互作用,并去除化学疗法药物引起的DNA加合物。NER的关键基因通常在癌细胞中过度表达,该途径的改变负责增加或降低对特定治疗剂的敏感性。这在软组织肉瘤(STS)中特别相关,稀有间充质原始肿瘤的潜在机制仍然缺乏理解。完全可以是STS中潜在的治疗靶标。NER活性的微妙调节可能在临床上与替代预后标记或预测对化学疗法剂的敏感性有关。应进一步对NER进行进一步的预期评估以解决这个问题。摘要
缩回≥2毫米,中等或重度软组织受累,种族和性别或性别或复视的正常≥3mm,具有“中度至严重疾病的存在,与症状,活动性疾病的存在相关,有活性疾病以及以下是一种相关的:lid撤回≥2mm,中度或严重的软组织或严重的软组织,预言和均等范围≥3MM,具有“存在明显的毒和文或两者的存在或两者的存在:不耐受性,衰竭或禁忌症(例如,泼尼松,甲基苯酚,甲基苯酚酮)”,具有“有明显的粘毒剂或文息或两者的存在,或两种情况:没有重要的粘脂肪或具有重要的粘脂能力或具有重大的粘脂或文双文凭,或者是不耐受性,不耐受性,或contector的病史泼尼松,甲基强酮)”
牙科激光器CO 2激光的类型和应用一直是牙科自1970年代引入以来的重要工具,主要用于软组织应用。它是一种用于其机制的气体混合物(主要是二氧化碳)。CO 2激光在10,600 nm的波长下排放[1]。这些主要用于软组织手术,这是由于其高吸收吸收而导致有效的切割和凝结,对周围组织的损害最小。由于其在水和羟基含量中的吸收高吸收而对软组织都有效。在正确使用时提供了精确的切割和蒸发,并对周围的组织进行最小的热损害[2]。这些激光器不仅可以用于手术,包括牙龈切除术,肾切除术和口服病变的治疗,例如白细胞,erythroplakia和地衣
我们报告了使用计算机断层扫描 (CT) 的 2D 和 3D 图像中人脑内子弹的位置。它基于在圆形 3600 CCD 探测器上用 X 射线光子扫描大脑的硬组织和软组织以及子弹。目标大脑和子弹的吸收在测量电流 (mA) 和映射的亨斯菲尔德单位 (HU) 方面存在显著差异,这是切片数量的函数。2D 和重建的 3D 图像显示大脑软组织,与 HU 较高的子弹部分相比,大脑软组织较暗且 HU 较低,而子弹部分为白色且 HU 较高。子弹与铜 (Cu) 的衰减系数和脑颅骨与钙 (Ca) 的衰减系数高于脑软组织与氢 (H) 和氧 (O) 的衰减系数。一个典型的例子是观察到切片中心的图像在 3071 HU 处显示更亮。生成了 3D 脑结构图像,并在不同的观察位置进行了可视化。子弹的测量值为距离入口(前部)11.28 厘米,距离后部 7.92 厘米,深度 6.96 厘米,位于大脑上部。根据我们的分析,子弹位于左半球,是下丘脑和胎盘的一部分。
虽然研究人员在地球上 3D 打印骨骼方面取得了一些成功,但制造血管和肌肉等人体软组织却困难重重。在地球上,当尝试使用柔软、易流动的生物材料进行打印时,这些材料可以更好地模拟人体的自然环境,但组织会在自身重量的作用下塌陷,最终变成一滩泥浆。但如果在太空微重力环境下使用这些材料,3D 打印的软组织将保持其形状。
摘要:软组织肉瘤(STS)包括一大批间充质恶性肿瘤,具有异质性细胞形态,增殖指数,遗传病变以及更重要的是临床特征。对这种广泛的多样性进行全面阐明仍然是改善其治疗管理和细胞 - 原始肿瘤的身份的核心问题,这些肿瘤是这种谜团的一部分。细胞重编程允许表型或身份之间成熟细胞的过渡,并代表肿瘤异质性的一个关键驱动力。在这里,我们讨论了驱动基因在STS中介导的细胞重编程如何深刻地重塑转化的细胞的分子和形态特征,并导致对其原始细胞的错误解释。本评论质疑必须将遗传改变的表观遗传环境视为STS肿瘤启动和进展的关键决定因素。重试癌症引发细胞及其克隆进化,尤其是通过表观遗传学方法,似乎是了解这些肿瘤起源并改善其临床管理的关键杠杆。
我们已经从肽二氢硫醇融合的2-吡啶酮支架中开发了GMPCIDES,该二吡咯酮融合了抗微生物活性,该酮具有抗微生物活性。在这里,我们使用皮肤和软组织感染(SSTI)和生物膜形成模型来检查GMPCIDES的治疗功效。筛选我们的化合物文库中的最小抑制性(MIC)和最小杀菌(MBC)浓度鉴定为对pyogenes的GMPCIDE PS757的浓度高度活跃。使用PS757对化脓性链球菌生物膜进行处理,揭示了通过防止初始生物膜发展,停止生物膜成熟并消除成熟生物膜的生物膜形成的所有阶段。在孢子链球菌SSTI的鼠模型中,皮下递送PS757导致组织损伤水平降低,细菌负担降低以及伤口愈合的加速速率,这与关键的病毒率因子的下调有关,包括M蛋白和SPEB蛋白质和SPEB固醇蛋白酶。这些数据表明,GMPCIDES对治疗化脓性链球菌感染显示出巨大的希望。
正确捕获图像引导的神经外科术中的术中大脑移位是将术前数据与术中几何形状对准数据的关键任务,以确保准确的手术导航。虽然有限元方法(FEM)是一种经过验证的技术,可以通过生物力学制剂有效地近似软组织变形,但其成功程度归结为准确性和速度之间的权衡。为了解决这个问题,该领域中的最新作品提出了通过培训各种机器学习算法获得的数据驱动模型(例如,随机森林,人工神经网络(ANN)),并通过有限元分析(FEA)的结果来加快预测的速度。但是,这些方法在训练过程中没有说明有限元(Fe)网格的结构,以提供有关节点连接性的信息以及它们之间的距离,这可以帮助基于与其他网状节点的强力负载点的接近近似组织变形。因此,这项工作提出了一个新颖的框架Physgnn,该模型是通过利用图形神经网络(GNN)来近似于FEM解决方案的模型,该模型能够考虑到网格结构信息,并在未结构化的网格和复杂的拓扑结构上考虑网格结构信息和归纳性学习。从经验上讲,我们证明了所提出的体系结构有望准确且快速的软组织变形近似,并且与最新的ART(SOTA)算法具有竞争力,同时有望增强计算可行性,因此适用于神经外科设置。