软骨组织工程已经取得了巨大的进步,从基本的手术干预措施发展为更细微的生物技术方法。该领域已面临各种挑战,其中包括细胞考虑因素,脚手架材料选择,环境因素以及道德和调节性约束。细胞源多样化的创新,包括软骨细胞,间充质干细胞和诱导的多能干细胞的创新,但并非没有局限性,例如受限的细胞增殖和伦理困境。脚手架材料在天然底物之间提供了独特的二分法,可提供生物相容性和合成矩阵,这些矩阵具有机械完整性。但是,临床适用性的转化障碍持续存在。环境因素,例如生长因子以及热力和机械力,已被认为是细胞行为和组织成熟的影响变量。尽管有这些进步,但与宿主组织的整合仍然是一个重大挑战,涉及机械和免疫学复杂性。期待,诸如3D和4D打印,纳米技术和分子疗法等新兴技术有望完善脚手架设计和增强组织再生。随着该领域的继续成熟,涵盖彻底的科学研究和协作的多学科方法对于克服现有挑战并实现其全部临床潜力是必不可少的。
软骨组织工程已经取得了巨大的进步,从基本的手术干预措施发展为更细微的生物技术方法。该领域已面临各种挑战,其中包括细胞考虑因素,脚手架材料选择,环境因素以及道德和调节性约束。细胞源多样化的创新,包括软骨细胞,间充质干细胞和诱导的多能干细胞的创新,但并非没有局限性,例如受限的细胞增殖和伦理困境。脚手架材料在天然底物之间提供了独特的二分法,可提供生物相容性和合成矩阵,这些矩阵具有机械完整性。但是,临床适用性的转化障碍持续存在。环境因素,例如生长因子以及热力和机械力,已被认为是细胞行为和组织成熟的影响变量。尽管有这些进步,但与宿主组织的整合仍然是一个重大挑战,涉及机械和免疫学复杂性。期待,诸如3D和4D打印,纳米技术和分子疗法等新兴技术有望完善脚手架设计和增强组织再生。随着该领域的继续成熟,涵盖彻底的科学研究和协作的多学科方法对于克服现有挑战并实现其全部临床潜力是必不可少的。
摘要 骨关节炎(OA)是一种慢性退行性关节疾病,以关节软骨破坏、软骨下骨硬化和关节功能障碍为特征,其发病机制归因于关节组织的直接损伤和机械破坏。间充质干细胞(MSCs)被认为是治疗OA的潜在策略,已显示出对OA的治疗作用。但MSCs在关节内注射后的具体命运,包括细胞附着、增殖、分化和死亡,仍不清楚,而且不能保证干细胞能够保留在软骨组织中发挥修复作用。MSCs的直接归巢是基于MSC的软骨修复效果的重要决定因素。最近的研究表明,MSCs独特的归巢能力和靶向修饰可以提高其促进组织再生的能力。本文,我们全面回顾了干细胞在关节中的归巢作用,并强调了MSCs靶向修饰的进展。未来,这种加速组织再生的靶向系统的发展将有利于靶向组织修复。关键词:骨关节炎,间充质干细胞,靶向递送
随着人口体重和年龄的增加,烟草的消费,不适当的食物以及近年来体育活动的减少,骨和关节疾病(例如骨关节炎)(OA)在世界上变得越来越普遍。从过去到现在,已经研究并研究了各种治疗策略(例如,微骨折治疗,自体软骨细胞植入(ACI)和骨成形术),并研究了预防和治疗这种疾病。然而,这些方法面临着诸如侵入性,没有完全修复组织和破坏周围组织等问题。组织工程(包括软骨组织工程)是一种微创,创新性和有效的方法之一,用于治疗和再生受损软骨的治疗和再生,这吸引了过去几年中医学和生物材料领域的科学家的注意。具有不同特性的不同类型的水凝胶已成为工程和处理软骨组织的理想候选者。他们可以涵盖其他治疗方法的大多数缺点,并对患者造成最小的次要损害。除了将水凝胶作为理想的策略外,还将新药物输送和治疗方法(例如通过机械信号传导靶向药物输送和治疗)被研究为有趣的策略。在这项研究中,我们审查并讨论了各种类型的水凝胶,用于水凝胶生产的生物材料,靶向软骨的药物输送以及机械信号作为软骨治疗的现代策略。
都柏林市大学的机械与制造工程学院,都柏林9,爱尔兰B医学工程研究中心(Medeng),都柏林城市大学,都柏林9号,爱尔兰C先进加工技术研究中心,都柏林城市大学,都柏林9号,爱尔兰D组织Distrue Engineerering工程小组,解剖学和恢复医学。 Stephen's Green, Dublin 2, Ireland e Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland f Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland g Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College爱尔兰的都柏林,h国家脊柱损伤部门,Mater Misericordiae大学医院,都柏林,爱尔兰I IBET,Biologia de Biologia de Biologia实验性ETecnológica,2781-901 Oeiras,葡萄牙J. Instituto j Instituto j Instituto d de tecnologiaquímicaebiológicaEbiológicanioantounio xavia de llboboa dea dea dea dea dea dea dea dea dea a dea a dea a dea。 Oeiras,葡萄牙K Cappagh国家骨科医院,弗拉斯,都柏林11号,爱尔兰l部分兽医临床科学,兽医学院,都柏林大学学院兽医学院,都柏林4,爱尔兰都柏林市大学的机械与制造工程学院,都柏林9,爱尔兰B医学工程研究中心(Medeng),都柏林城市大学,都柏林9号,爱尔兰C先进加工技术研究中心,都柏林城市大学,都柏林9号,爱尔兰D组织Distrue Engineerering工程小组,解剖学和恢复医学。Stephen's Green, Dublin 2, Ireland e Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland f Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland g Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College爱尔兰的都柏林,h国家脊柱损伤部门,Mater Misericordiae大学医院,都柏林,爱尔兰I IBET,Biologia de Biologia de Biologia实验性ETecnológica,2781-901 Oeiras,葡萄牙J. Instituto j Instituto j Instituto d de tecnologiaquímicaebiológicaEbiológicanioantounio xavia de llboboa dea dea dea dea dea dea dea dea dea a dea a dea a dea。 Oeiras,葡萄牙K Cappagh国家骨科医院,弗拉斯,都柏林11号,爱尔兰l部分兽医临床科学,兽医学院,都柏林大学学院兽医学院,都柏林4,爱尔兰
抽象的软骨肉瘤是软骨组织的主要癌症,能够改变高度侵略性,转移性和治疗难治性状态,导致预后较差,五年的生存率在11个月时进行了分化的亚型。目前,软骨肉瘤的手术切除是唯一有效的治疗方法,并且没有其他治疗选择,包括靶向疗法,常规化学疗法或免疫疗法,可用于这些患者。在这里,我们确定了涉及EZH2/SULF1/CMEM轴的信号途径,该方法有助于软骨肉瘤的恶性肿瘤,并为该疾病提供了潜在的治疗选择。一种非偏置的染色质免疫沉淀序列,cDNA微阵列分析和软骨肉瘤细胞系的验证,鉴定出硫酸酶1(SULF1)是最高的EZH2靶向基因,以调节软骨肉瘤的进展。过表达的EZH2导致软骨肉瘤细胞系中的Sulf1下调,这又激活了CMET途径。对CMET或遗传沉默的CMET途径的药物抑制显着降低了软骨肉瘤的生长并扩展了小鼠的存活。 在软骨肉瘤的患者样品中,进一步验证了EZH2/ SULF1/ CMET轴的调节。 结果不仅建立了促进软骨肉瘤恶性肿瘤的信号途径,而且还为进一步开发有效的靶向治疗治疗软骨肉瘤提供了挑战潜力。对CMET或遗传沉默的CMET途径的药物抑制显着降低了软骨肉瘤的生长并扩展了小鼠的存活。在软骨肉瘤的患者样品中,进一步验证了EZH2/ SULF1/ CMET轴的调节。结果不仅建立了促进软骨肉瘤恶性肿瘤的信号途径,而且还为进一步开发有效的靶向治疗治疗软骨肉瘤提供了挑战潜力。
简介生长板 - 位于长骨边缘的薄盘状软骨 - 为产后骨骼生长提供了主要驱动力(1)。从结构上讲,生长板由3个形态学 - 静止,增殖和肥厚的区域组成,具有具有克隆起源的软骨细胞的特征柱(2,3)。生长板是内侧软骨骨形成的必不可少的结构,该过程逐渐被骨骼逐渐取代(1,2)。位于产后生长板顶部的静息区载有慢循环软骨细胞,表达甲状旁腺激素相关蛋白(PTHRP)(4),该蛋白(4)提供了生长板中所有其他软骨细胞的来源。这些“静止”的软骨细胞通过不对称分裂进入细胞周期,成为增殖的软骨细胞,分化为表达印度刺猬(IHH)的有丝虫后自生型前软骨细胞(IHH),变成肥大的软骨细胞的生长板和死亡的骨骼或因素而变成骨的底部或因素而变成骨的底部或因素而转变为骨的底部,因为主要海绵中的成骨细胞。
摘要:软骨肉瘤 (CHS) 是异质性的,但总体而言,是第二大最常见的原发性恶性骨肿瘤。尽管在过去几十年中,人们对肿瘤生物学的了解呈指数级增长,但手术切除仍然是治疗这些肿瘤的金标准,而放疗和分化化疗无法充分控制癌症。对 CHS 的深入分子表征揭示了与上皮来源的肿瘤相比的显著差异。从遗传学上讲,CHS 是异质性的,但没有定义 CHS 的特征性突变,然而,IDH1 和 IDH2 突变很常见。血管减少、胶原蛋白、蛋白聚糖和透明质酸的细胞外基质组成为肿瘤抑制免疫细胞创造了机械屏障。相对较低的增殖率、MDR-1 表达和酸性肿瘤微环境进一步限制了 CHS 的治疗选择。 CHS 治疗的未来进展取决于对 CHS 的进一步表征,特别是肿瘤免疫微环境,以便改进和更好地针对性地治疗。
原理:需要一种细胞特异性的运载载体来实现对疾病相关细胞的基因编辑,因此可遗传的基因组编辑反应被限制在这些细胞内而不会影响健康细胞。通过工程外泌体和脂质体融合而获得的基于混合外泌体的纳米级运载载体将能够选择性地将 CRISPR/Cas9 质粒封装并递送到嵌入关节软骨的软骨细胞中,并减轻软骨损伤的状况。方法:通过在外泌体表面蛋白 Lamp2b 的 N 端遗传融合软骨细胞亲和肽 (CAP) 构建软骨细胞靶向外泌体 (CAP-Exo)。CAP-Exo 与脂质体的膜融合形成混合 CAP-外泌体 (混合 CAP-Exo),用于封装 CRISPR/Cas9 质粒。通过关节内(IA)给药,杂合体CAP-Exo/Cas9 sgMMP-13进入模拟骨关节炎状态的软骨损伤大鼠的软骨细胞。结果:杂合体CAP-Exo通过IA给药进入关节炎大鼠软骨基质的深层区域,将质粒Cas9 sgMMP-13递送至软骨细胞,敲低基质金属蛋白酶13(MMP-13),有效消除软骨细胞中MMP-13的表达,并减弱软骨中细胞外基质蛋白的水解降解。结论:软骨细胞特异性敲低MMP-13可减轻或预防关节炎大鼠的软骨退化,表明杂合体CAP-Exo/Cas9 sgMMP-13可以缓解骨关节炎。
创伤引起的关节软骨缺损很少能自愈,容易引发创伤后骨关节炎。在目前的自体细胞治疗中,再生过程常常受到成体细胞较差的再生能力和受伤关节的炎症状态的阻碍。由于缺乏理想的软骨损伤治疗方案,作者们试图通过组织工程来构建一种更能抵抗炎症的软骨组织。在多指软骨细胞中,成簇的规律间隔的短回文重复序列 (CRISPR)-Cas9 敲除 TGF- 𝜷 激活激酶 1 (TAK1) 基因可提供多价保护,以抵御激活促炎和分解代谢 NF- 𝜿 B 通路的信号。 TAK1-KO 软骨细胞被封装到透明质酸水凝胶中,沉积大量软骨细胞外基质蛋白,并促进与天然软骨的整合,即使在促炎条件下也是如此。此外,当植入体内时,与野生型相比,侵入软骨的促炎性 M1 巨噬细胞较少,这可能是由于 TAK1-KO 多指软骨细胞分泌的细胞因子水平较低。因此,工程软骨代表了创造用于再生医学的更有效和功能性组织的新范式转变。