进行了混合实验-数值研究,以建立在加压飞机机身中存在或不存在多点损伤 (MSD) 的情况下的实用裂纹扭结标准。修改了 Ramulu-Kobayashi 裂纹扭结标准,以预测沿 MSD 线的自相似裂纹扩展以及随后在撕裂带附近的扭结。进行了仪器化双轴试验样品和小型机身断裂实验,以生成裂纹扭结和裂纹速度数据,然后将其输入到断裂样品的大变形弹性动力学有限元模型中。计算出的混合模式 I 和 II 应力强度因子以及扩展裂纹之前的大轴向应力用于评估自相似裂纹扩展和裂纹轨迹上的裂纹扭结标准。预测和测量的裂纹扭结角度和位置之间具有极好的一致性。通过计算和测量的应变计数据的匹配进行了额外的验证。
利益冲突Philipp Karschnia-从Ludwig-Maximilians-University慕尼黑的“研究与教学支持计划”(Föfole)授予了“ LMU医学研究与科学学会”(Wifomed)(Wifomed)的“弗里德里希·贝尔·贝尔(Friedrich-Baur) - 贝尔·贝尔(Friedrich-Baur-Baur-Roundation)和“ Familie mehdontation”。Emilie le Rhun -Elr获得了Abbvie,Adastra,Daiichi Sankyo,Leo Pharma,Seagen和Tocagen的讲座或顾问委员会的酬金。Michael Vogelbaum- Infuseon Therapeutics的间接股权和患者特许权使用权益。来自Celgene和Cellinta的Honararia。从Celgene和Oncosynergy获得的研究赠款。Martin van den bent- Celgene,BMS,Agios,Boehringer,Abbvie,Abbvie,Bayer,Carthera,Nerviano和Genenta的顾问。Stefan J. Grau - 未报告披露。Matthias Preusser – MP has received honoraria for lectures, consultation or advisory board participation from the following for-profit companies: Bayer, Bristol- Myers Squibb, Novartis, Gerson Lehrman Group (GLG), CMC Contrast, GlaxoSmithKline, Mundipharma, Roche, BMJ Journals, MedMedia, Astra Zeneca, AbbVie,礼来(Lilly),梅达德(Medahead),戴伊(Daiichi Sankyo),赛诺菲(Sanofi),默克·夏普(Merck Sharp&Dome),托卡根(Tocagen),阿法斯特拉(Adastra)。以下营利性公司支持MP向其机构支付的临床试验和合同研究:Böhringer-Ingelheim,Bristol-Myers Squibb,Roche,Daiichi Sankyo,Daiichi Sankyo,Merck Sharp&Dome,Novocure,Novocure,GlaxoSmithkline,Abbvie。Riccardo Soffietti-未报告披露。Louisa von Baumgarten - 尚无报告。 Manfred Westphal - 未报告披露。Louisa von Baumgarten - 尚无报告。Manfred Westphal - 未报告披露。Michael Weller-来自Abbvie,Adastra,Merck,Sharp&Dohme(MSD),默克(EMD),Novocure,Piqur和Roche的研究赠款。荣誉仪式或咨询委员会的参与或咨询咨询,来自Abbvie,Adastra,Basilea,Bristol Meyer Squibb(BMS),Celgene,Merck,Sharp&Dohme(MSD),Merck(EMD),Novocure,Orbus,Roche,Roche,Tocagen和Ymabs和Ymabs和Ymabs和Ymabs和Ymabs。Joerg -Christian Tonn- Brainlab和Carthera的顾问/发言人Honoraria,以及Springer Publisher Intl的特许权使用费。
1位法国旅行车的古斯塔夫·德伦医院; 2法国大学,法国里尔; 3纽芬兰圣约翰和加拿大拉布拉多的纪念大学内分泌学系医学系; 4荷兰莱顿莱顿大学医学中心医学微生物学系; 5 Muhimbili Health and Allied Sciences的Abbas Medical Center,坦桑尼亚达累斯萨拉姆; 6美国马萨诸塞州波士顿塔夫茨医学中心医学系; 7 LA PALOMA医院,西班牙拉斯帕尔马斯·德·格兰加里亚; 8加拿大曼尼托巴省曼尼托巴省曼尼托巴大学传染病科医学系; 9美国达拉斯西南医疗中心整形外科部; 10美国南卡罗来纳州哥伦比亚市Prisma Health-Midlands医学系; 11 UT西南医疗中心,美国德克萨斯州达拉斯;瑞士苏黎世的巴尔格斯特大学医院12; 13斯洛文尼亚卢布尔雅那大学医学中心,大学医学中心医学中心;中国北京的14个糖尿病中心; 15荷兰阿姆斯特丹的阿姆斯特丹阿姆斯特丹UMC,阿姆斯特丹UMC,荷兰阿姆斯特丹的科。 16阿姆斯特丹运动科学,康复与发展,荷兰阿姆斯特丹; 17阿姆斯特丹感染和免疫,传染病,阿姆斯特丹,荷兰
关于产品是否适用于某些类型的应用的声明是基于 Vishay 对 Vishay 产品在通用应用中通常提出的典型要求的了解。此类声明不是关于产品是否适用于特定应用的约束性声明。客户有责任验证具有产品规格中所述属性的特定产品是否适用于特定应用。数据表和/或规格中提供的参数可能因不同应用而异,性能也可能随时间而变化。所有操作参数(包括典型参数)必须由客户的技术专家针对每个客户应用进行验证。产品规格不会扩大或以其他方式修改 Vishay 的购买条款和条件,包括但不限于其中表达的保修。
诸如MOSFET,光电探测器,光伏细胞之类的设备的性能受到接口质量的强烈影响,尤其是介电和硅之间。已知通过高介电常数Diélectrics(High-k)对IF的钝化可以改善这些接口的电性能。在用于表征界面质量的方法中,第二次谐波(SHG)的产生是一种基于非线性光学器件的有希望的敏感和非破坏性技术。在偶极近似中,中心分析材料中的SHG响应(例如Si,Al 2 O 3,Sio 2等)为零。因此,SHG响应主要包含与界面相关的信息,其中对称性被打破。此外,在界面处的电场(E DC)存在下,信号得到加固。该现象称为efish(电场诱导的SHG)。由于电界面场与氧化物(Q OX)和/或界面状态(d IT)中的固定载荷相关联,因此SHG技术对这些电参数敏感。本论文的目的是校准SHG响应,以测量与电介质中固定载荷相关的电场。从SHG实验数据中提取电气信息需要考虑光学现象的影响(吸收,干扰等。),这得益于对所研究结构的第二个谐波的响应进行建模/模拟。我们的仿真程序基于我们为多层人士改编的文献的理论模型。实验是在Si(100)上的几层Al 2 O 3上进行的,在可变条件下沉积并且界面质量非常不同。互补的电气技术,例如Corona负载(COCOS)和容量张力测量(C-V)的表征,使得访问样品的电场并完成SHG结果以进行校准。实验和模拟证明了Si介电的单个校准的可能性还讨论了与多层(绝缘体上的硅)等多层表征相关的一些研究元素,特别是对各个接口处存在的层厚度或电场厚度的SHG响应的影响。
深度学习对物理模拟(例如计算流体动力学)的应用最近引起了人们的兴趣,并且在不同领域中证明了它们的生存能力。但是,由于高度复杂,湍流和三维流,尚未证明它们可用于涡轮机械应用。用于燃气轮机应用的多阶段轴向压缩机代表了一个非常具有挑战性的情况,这是由于几何和操作变量的流场回归的高差异性。本文展示了深度学习框架的开发和应用,以预测多阶段轴向压缩机的流动场和空气动力学性能。一种基于物理的降低性降低方法解锁了流场预测的潜力,因为它将回归问题从非结构化的问题重新构建为结构化的问题,并减少了自由度的数量。与传统的“ Black-Box”替代模型相比,它通过识别相应的空气动力学驱动程序来为整体性能的预测提供解释性。该模型适用于制造和建造变化,因为已知相关的性能散布对CO 2排放产生重大影响,这构成了巨大的工业和环境相关性的挑战。事实证明,所提出的体系结构可实时实现与CFD基准的准确性,以实时与工业相关的应用。部署的模型很容易集成到燃气轮机的制造和建造过程中,从而提供了通过可行和可解释的数据来分析评估对性能的影响的机会。
1个生物科学学院,谢菲尔德大学,谢菲尔德,英国2 2神经科学研究所,谢菲尔德,谢菲尔德,谢菲尔德,英国,英国,大学生物学和癌症大学3,出生缺陷研究中心,UCL GOS儿童健康研究所,UCL GOS儿童健康研究所,UK 4 Cell and Developmence of Dundee and Dundee of Dundee,Dundee of Dundee,Dundee of Dundee,Dundee of Dundee and Dundee of Dunderecience of Dundee and Dundee of Dundee of Dunderecience of Dundee and Biocience of Dundereci英国谢菲尔德谢菲尔德·哈勒姆大学化学 *作者(f.cooper@sheffield.ac.uk和a.tsakiridis@sheffield.ac.ac.uk)1个生物科学学院,谢菲尔德大学,谢菲尔德,英国2 2神经科学研究所,谢菲尔德,谢菲尔德,谢菲尔德,英国,英国,大学生物学和癌症大学3,出生缺陷研究中心,UCL GOS儿童健康研究所,UCL GOS儿童健康研究所,UK 4 Cell and Developmence of Dundee and Dundee of Dundee,Dundee of Dundee,Dundee of Dundee,Dundee of Dundee and Dundee of Dunderecience of Dundee and Dundee of Dundee of Dunderecience of Dundee and Biocience of Dundereci英国谢菲尔德谢菲尔德·哈勒姆大学化学 *作者(f.cooper@sheffield.ac.uk和a.tsakiridis@sheffield.ac.ac.uk)
Flow 部门专门为客户的工艺提供专门设计的泵送解决方案。我们提供通过深入研究和开发流体动力学和先进材料而开发的泵、搅拌器、压缩机、研磨机、筛网和过滤器。我们是水、石油和天然气、电力、化学品和大多数工业领域泵送解决方案的市场领导者。
抽象目标:本研究旨在制定D2T(难以治疗)轴向脊椎关节炎(AXSPA)患者的标准,并确定D2T患者及其特征的患病率。患者和方法:2023年2月至2023年2月,对166名AXSPA患者(93名男性,73名女性:47.1±12.9岁;范围为19至78岁)进行了横断面研究。标准是基于根据欧洲风湿病学协会(EULAR)建议AXSPA治疗的患者。进入标准是治疗失败≥2生物/靶向合成疾病改良的抗疾病药物,具有两种不同的作用机制,或≥3个生物/靶向合成疾病 - 修改抗疾病药物。分析了D2T标准的潜在初步因素,并将与D2T标准相匹配的受试者的特征与其他受试者的特征进行了比较。结果:研究包括1002例强直性脊柱炎患者和24名非放置AXSPA患者。在用生物学剂治疗的AXSPA患者中,满足D2T标准的率为22.9%(n = 38)。潜在的D2T标准由23.2%的强直性脊柱炎和20.8%的非放置AXSPA患者满足。D2T患者的基线特征,例如性别,年龄,诊断年龄,职业和教育,与其他患者没有统计学上的不同。D2T患者的纤维肌痛的患病率较高(P <0.001)。疾病活动指标和急性期反应指标较高,D2T患者的生活质量较差。结论:尽管有新的有效的治疗剂,但仍有大量的AXSPA患者满足D2T标准。
所有当前和将来的剂量表格都将需要 m aual g uidelines。 下表1中定义了所有药物特异性标准,包括每种药物的药物特异性指示,年龄和十二个。 abatacet(Orencia®Adamummb(Humira®T,Amjevita™,Cyltezo®,Haslimoz,Hyrimoz®,Dacio®,Dacio®,Simlandi®,Yunet®th(Olumian®)(Olumian®)Certolizumab(Cimzia®Etanercept(cimzia®Etanercept) (Remicade®,Avsola®,Inffecttra®,Renflexan(Rituxis®)Ruxience®,Truxim®)Sarimpion(Kevzara®Tocilizumab(Actemra®,Tofidence™,Tyenne®)Tofacitinib(Xeljanz®,Xeljanz®,Xeljanz Xr)m aual g uidelines。下表1中定义了所有药物特异性标准,包括每种药物的药物特异性指示,年龄和十二个。abatacet(Orencia®Adamummb(Humira®T,Amjevita™,Cyltezo®,Haslimoz,Hyrimoz®,Dacio®,Dacio®,Simlandi®,Yunet®th(Olumian®)(Olumian®)Certolizumab(Cimzia®Etanercept(cimzia®Etanercept) (Remicade®,Avsola®,Inffecttra®,Renflexan(Rituxis®)Ruxience®,Truxim®)Sarimpion(Kevzara®Tocilizumab(Actemra®,Tofidence™,Tyenne®)Tofacitinib(Xeljanz®,Xeljanz®,Xeljanz Xr)