涉及生成科学数据的壁内NIH研究受到2023年NIH数据管理和共享政策的约束。该政策要求提交数据管理和共享计划,并遵守批准的计划。对于将在2023年1月25日或之后进行的所有正在进行的与Zia(且不包含在临床方案中)相关的壁内研究,研究人员/项目负责人必须在2023年1月25日之前提交DMS计划。在该日期之后,可以全年提交新的和修订的计划,但必须作为年度报告过程的一部分批准并批准。对于与2023年1月25日或之后提交的IC初步科学审查相关的研究,必须与其他协议材料一起提交DMS计划。对于先前的协议,必须将DMS计划作为四年审查的一部分提交。如果拟议的研究将生成大规模的基因组数据,则基因组数据共享策略也适用,应在DMS计划中解决。DMS计划结合了2015年壁内人类数据共享政策所需的数据共享计划要素。壁内DMS计划模板与NIH为校外研究社区开发的建议模板一致,可在此处获得。有关DMS策略的其他指南,请访问sharing.nih.gov和OIR资源书。有关NIH共享政策,包括新数据管理和共享政策,请联系sharing@nih.gov。NIH图书馆提供一对一和小组咨询,以及课程和其他服务。DMP工具是加利福尼亚大学的一项服务,提供了其他指导和示例语言。提供了一些DMP工具示例答案。仅提供这些示例,调查人员使用此语言是可选的。
应变工程已成为一种强大的技术,可以调整二维半导体(如钼二二二硫化物)的电子和光学特性(MOS 2)。尽管几项理论作品预测双轴菌株比单轴菌株更有效,以调整MOS 2的带状结构,但文献中仍缺少直接的实验性验证。在这里,我们实施了一个简单的实验设置,该设置允许通过弯曲十字形聚合物底物施加双轴应变。我们使用该设置来研究双轴菌株对12个单层MOS 2平流的差异反射光谱的影响,以40 MEV/%和110 MeV/%的双轴张力介绍了激子特征的红移。我们还直接比较了双轴和单轴应变对同一单层MOS 2发现的效果,即双轴应变量表因子是单轴菌株1的2.3倍。
董事办公室(OD)尼克·安德拉德(Nick Andrade)| nick.andrade@nih.gov |培训专家,数据科学策略办公室伊夫林·博茨威| botchwaye@od.nih.gov |数据科学策略办公室计划分析师Philip Chiang | chiangpt@od.nih.gov |校内研究办公室布莱恩特·詹(Bryant Jen)办公室专家| jenb2@od.nih.gov |室内研究办公室Nitin Kumar办公室专业经理| kumarn6@od.nih.gov |壁内研究办公室基础设施系统官员Etan Kuperberg | etan.kuperberg@nih.gov |卫生科学政策分析师,校外研究办公室Alison Lin博士| alison.lin@nih.gov |培训,劳动力倡议和社区参与(两次)部门负责人,数据科学办公室策略Steevenson Nelson博士| nelsons2@od.nih.gov |程序总监Rashod Qaim | qaimra@od.nih.gov |机器学习工程师,执行办公室卡洛斯·桑切斯(Carlos Sanchez)| sanchezc3@od.nih.gov |执行办公室的计划官克里斯·索尔兹(Chris Sowards)| chris.sowards@nih.gov |信息系统安全官,信息技术办公室Ylang Tsou | tsouyh@od.nih.gov |壁内研究办公室荣誉荣誉办公室| zhouh5@od.nih.gov |计划官员,执行办公室
通常称为5CB,4-甲氧-4'-戊苯基是具有化学式C18H19N的列液晶体。它首先由乔治·威廉·格雷(George William Gray),肯·哈里森(Ken Harrison)和J.A.合成。纳什(Div> Nash)于1972年在赫尔大学(University of Hull),当时是氰基苯基的第一位成员。[1] [2] 5CB分子在22.5°C下从晶体到列相的相变长20Å,并在35.0°C下从列中到同性恋态。尽管由于其低过渡温度向各向同性及其狭窄的列相范围而不适合LCD,但它仍然是基础研究中最常用的列表之一。这是阳性介电各向异性材料的参考材料之一,并且可用的物理数据量最多。碳纳米管是由滚动石墨烯片制成的管状结构。作为许多纳米颗粒,对它们进行了研究,以便在其他材料中使用和插入以改善其电气[3-5]或生物学[6]特性,但也作为光电和磁化器件中高级材料的掺杂剂[7-12]。,为了适当使用,必须将它们作为单个颗粒作为单个颗粒进行研究,而不是像它们表现出完全不同的行为的大部分。许多
单壁碳纳米管于 1991 年被“正式”发现,但有传闻表明这些结构的出现可能早于正式发现近 40 年。纳米管是纳米尺寸的管状结构。碳纳米管 (CNT) 之所以具有吸引力,是因为它们兼具机械强度、高热导率和可调节的电气性能。这些特性使该技术适用于从混凝土和复合材料到电池存储、汽车、电子、医疗和国防市场等各种应用。纳米技术的性能优势广为人知,但成本和可用性问题阻碍了其广泛采用。CHASM Advanced Materials 希望改变这种模式。CHASM Advanced Materials 的故事始于 Chasm Technologies,这是一家由 Dave Arthur 和 Bob Praino 于 2005 年创立的咨询公司。在共同创办 Chasm Technologies 后不久,Dave Arthur 离开公司,担任 SouthWest NanoTechnologies (SWeNT) 的首席执行官,SWeNT 是 Chasm 的首批客户之一。 SWeNT 成为电子和复合材料应用领域碳纳米管材料的领先生产商,并于 2009 年与 Chasm Technologies 正式建立战略联盟。2015 年,Chasm Technologies 同意收购 SWeNT,Dave Arthur 成为新成立的 CHASM Advanced Materials 的首席执行官。CHASM 的总部和应用开发中心位于马萨诸塞州坎顿一座占地 10,000 平方英尺的工厂内。碳纳米管面临的挑战之一是规模。收购 SWeNT 后,SWeNT 在俄克拉荷马州诺曼拥有一座占地 18,000 平方英尺的先进制造工厂,该工厂经过特殊设计和配置,可生产高纯度碳纳米管。作为 CHASM 增长和创新战略的一部分,该工厂正在实施世界上最大的 CNT 生产平台,年生产能力为 1500 公吨。 CHASM 称该平台是大规模生产高质量 CNT 添加剂最具可扩展性、成本效益和可持续性的方法。这一努力
南亚的大米 - 小麦种植系统分别占全球大米和小麦生产的27%和16%,并维持超过1.29亿农民,其中大多数是小农户1。然而,由于气候变化的影响,该地区的大米和小麦产量趋势减慢或停滞了,这些负面影响预计在未来几十年中会恶化2。到2050年,南亚将成为最大的食品缺陷地区之一,因此需要大量生产来满足不断增长的粮食需求。作为解决这一即将发生的危机的一种潜在解决方案,气候智能农业(CSA)已被政府,研究人员以及粮食和农业组织广泛提倡。研究表明,CSA实践和技术可以增加农作物的产量,同时减少温室气体排放,并增加农业社区对气候冲击的弹性3,4。尽管有CSA的承诺,但大多数CSA实践和技术尚未在南亚5 - 7中被广泛采用。尽管有一些实践和技术已经使用了很长时间(例如,农作物多样化和绿肥),但尽管有证明其有效性,但许多其他实践和技术仍在努力获得动力(例如,零耕作,替代性润湿和干燥)。在这里,我们确定了南亚CSA实践和技术采用较低的关键原因,并提出了一系列有希望的策略,这些策略可能会增加其大规模的采用(图1)。
与焊接海洋结构相关的环境载荷和结构几何形状通常会产生多轴应力。大型焊接细节已用于表征海洋结构中的多轴疲劳响应;然而,这些测试的成本通常过高。对多轴疲劳文献进行了审查,以确定可用于预测多轴疲劳响应的分析技术。确定并总结了各种方法。参考了支持文献。在可用的情况下介绍了多轴方法的可靠性(偏差和散度)。确定了影响多轴疲劳响应的各种因素。以焊接细节为例,展示如何从单轴疲劳试验数据中获得多轴疲劳寿命预测。最后,建议开展研究以促进多轴疲劳研究向海洋结构的技术转移。
使机壳制造的生产率发生了重大变化。其中包括:设计一种新型气动夹具,用于在加工过程中固定部件;建立最佳加工参数,以积极影响材料进给率、刀具几何形状和刀具动力学。该研究还包括与合作伙伴 Sandvik Coromant 合作开发刀具磨损机制和刀具涂层以及超高压冷却液系统,以延长加工刀具寿命,并为每个零件建立优化的制造操作顺序,确保最短的制造周期时间,同时保持产品质量。