OFFSET- (A) 1 OUT+ (A) 2 VBRIDGE (A) 3 OUT- (A) 4 OUT- (B) 5 VBRIDGE (B) 6 GND (A) 7 S/R+ (B) 8 5 S1 9.82 Tw�[(423.6.6.4 -1S)353B28.26R388 re�213[(423.6.6.4+M213.865 423.94-423.678 668Tj�Tj�01A213.13[(423.6.6.277194 l�4 43461.475 0 823 w 3465.4313- (13.174 -8 r313- 4213.174 7�0.475 0436.4b7 0.353 98. 0.6.6.465 70.384 -6947.696 1411.840558848 -4.60423 w0 01007 -6.73213.10 01007 -3.135.84 l�44�9.28.2.353�9.20.318 -3226 0 038e�B57 437.4918 479.5 A013 Tm�0.0001 0 98.2 S/R+ 0 9C�21 0.49480.86.4774914 429.2 419.6¥2.24 1845 1.694 43461.434 75323 w 3465.431e�f�113.174 -8 r31e�68613.174 7�0.434 7480.4b7 0.353 98.84 -1.4310.6.953B28.2684 - 1411.8484 8428.16.35 3 w0 492.431 -0(13.194 0.6.41 -0(13.f2 m�57�0 Tw�(�9.28.2.353�9.20.318 -3226 T�8030(157 437.4918 4 偏移+)Tj9.5 B2.24HMC1021S)Tj�/F6 1 �[(.656179 0 2 -3914 429.22 -1.4 TD�-0.16)-5f�98.0001 T�1.5825 �[(OUT- �)-5f�98.�0 T1.5825 �[(OUT-88 -1.4 TD�0.14)-5f�98.�0 �1.5825 �[(OUT-]TJ�-0.2217 13)-5f�97.0001 TB25 �[(OUT-]]TJ�-0.0288 -1.4 12)-5f�98.0TJ�1.5B25 �[(OUT- �)-5f�98.0001 T-1.5B25 �[(OUT-2 -1.4 TD�-0.10)-5f�98.0001 T�1.5B25 �[(OUT- 9)-11TJ�S)0(0 T1.5B25 �[(O/F3OUT+S)Tj�/97e�440�9.47493.6.94344712 81.2309 490TD�-0.000101 Tw�[(OFFSUT- (+)-643.9(1)]TJ�-1.806 -1.4 TD�0 Tc�[(VBR48.4)-643.9(6)]TJ�2.274 TD�01.4 TD7(VBRIDG (A))-643.8(7)]TJ�2)]TJ�2.2784BRIDG •2A))-644(1)�0 Tc0002 TwT*�[(OUT-5283ND)-644(3)]TJ�-0.2217 - OFFSE2 Tw�[(VBRIDG ©A))-644(1)]1 Tc�-02.2787(OFFSET- �A))-644(1)]TJ�.0002 Tw�[(S/R+ &.42.430 0 8.24.807�213.5-469. 0 058.430 0 8.20.423.13.5-469. 45 12.430 0 8.20.423.13.5-469.f&.42.4292010724.807�213.5-469. 0 058.4292010720.423.13.5-469. 45 12.4292010720.423.13.5-469.f&.42.420 023.4.807�213.5-469. 0 058.420 023.0.423.13.5-469. 45 12.420 023.0.423.13.5-469.f&.42.42 6611.24.807�213.5-469. 0 058.42 6611.20.423.13.5-469. 45 12.42 6611.20.423.13.5-469.f&.42.425 05A214.807�213.5-469. 0 058.425 05A210.423.13.5-469. 45 12.425 05A210.423.13.5-469.f&.42.424T- 414.807�213.5-469. 0 058.424T- 410.423.13.5-469. 45 12.424T- 410.423.13.5-469.f&.42.422�199.24.807�213.5-469. 0 058.422�199.20.423.13.5-469. 45 12.422�199.20.423.13.5-469.f&.42.42 Tc96214.807�213.5-469. 45 12.42 Tc96210.423.13.5-469. 0 058.42 Tc96210.423.13.5-469..845 1.694 -.449sc�05 -18�0.31e�6436m05 -1241820 0 8613.464 0.7820 069813.46-125.431e.6670.4b7 0.353 98496- 49431e.36353B24.4)-0 0 2-469。 96- 49420 013353B24.4) –469。 96- 49431e�59153B24.4) –469..845 1.694 9 0 36442 4 -926m09 0 38424T-8.23.468.288 24T-81423.463.68612 4 -A213.b7 0.353 98473.8634255 039 14 -1147.694-469.f�f�978425 081M2139C�.14252.901.519C�.10142560 8.23.f2 m�8.282T+S
图1。肠道菌群与大脑之间的双向通信是由涉及内分泌系统,神经系统和免疫系统的直接和间接途径介导的。这些途径使用各种效应子,包括激素,神经递质,微生物代谢产物,肽,酶,免疫因子,进一步影响我们的代谢和整体健康。下丘脑 - 垂体 - 肾上腺(HPA)轴的激活与应力因素或营养不良的发生有关。在肾上腺皮质激素(ACTH)的影响下,肾上腺开始产生和分泌应激激素(皮质醇),这负责调节肠道免疫和屏障功能。在biorender.com中创建。
这篇硕士论文是一次非常有趣且收获颇丰的经历。我通过在 ALTRAN 和 AIRBUS 实习获得的机会是一次不可忽视的经历,无论是在社会关系方面还是在发展我的技术技能方面。我要特别感谢电气安装部门的全体团队成员,感谢他们的热情帮助我融入这些公司;特别是我的两位导师 Nicolas PHILIPPE 和 Michel BAREILLE,感谢他们给予我的大力帮助。我还要感谢我在查尔姆斯理工学院的导师 Torbjörn THIRINGER,他以无比的耐心帮助我解决了所有困难的行政问题,并在硕士论文期间给予了我很大的支持。最后,我要感谢我的家人在我待在瑞典期间的支持,因为没有他们的帮助,这次美妙的冒险就不可能实现。
摘要 — 电池储能系统 (BESS) 是可再生能源集成度高的电力系统的重要资产,可通过控制为电网提供各种关键服务。本文介绍了使用具有电网跟踪 (GFL) 和电网形成 (GFM) 控制的兆瓦级 BESS 以及径流式 (ROR) 水电站恢复区域电力系统的实际经验。为了证明这一点,我们进行了集成实际 GFL 或 GFM 控制的 BESS 和负载组的电力硬件在环实验。本文给出的模拟和实验结果都展示了 GFL 或 GFM 控制的 BESS 在电力系统黑启动中的不同作用。结果为系统运营商提供了进一步的见解,了解 GFL 或 GFM 控制的 BESS 如何增强电网稳定性,以及如何在小容量 BESS 的支持下将 ROR 水电站转换为具有黑启动功能的装置。结果表明,与传统自下而下的方法相比,ROR 水电站与 BESS 相结合有潜力成为执行自下而上黑启动方案的使能要素之一,从而增强系统的弹性和稳健性。
原理:基于干细胞的疗法已成为组织工程和再生医学的有前途的工具,但是它们的治疗疗效在很大程度上受到氧化应激诱导的受伤组织部位移植细胞的丧失的限制。为了解决这个问题,我们旨在探索ROS引起的MSC损失的潜在机制和保护策略。方法:使用实时PCR,Western blotting和RNA测序评估了TFAM(线粒体转录因子A)信号传导,线粒体功能,线粒体损伤,DNA损伤,凋亡和衰老。还分析了MSC中TFAM或LNCRNA核拼接组件的转录本1(Neat1)敲低或过表达对线粒体功能,DNA损伤修复,凋亡和衰老的影响。在肾脏缺血/再灌注(I/R)损伤的小鼠模型中评估了线粒体靶向抗氧化剂(mito-tempo)对移植MSC存活的影响。结果:线粒体ROS(MTROS)爆发导致TFAM信号传导和总体线粒体功能的缺陷,这进一步损害了Neat1表达及其介导的副夹层的形成和MSC中的DNA修复途径,从而在氧化应激下共同促进MSC衰减和死亡。相比之下,有针对性的抑制MTROS爆发是一种足够的策略,可以减轻受伤组织部位的早期移植MSC损失,而Mito-Tempo的共同给药可改善移植的MSC的局部保留和减少缺血性肾脏的氧化损伤。结论:本研究确定了线粒体 - 拼双轴在调节细胞存活中的关键作用,并可能为开发用于组织工程和再生医学的先进干细胞疗法提供见解。
摘要:简介:皮肤稳态与营养不良之间的双向联系,以及肠道微生物群的影响及其对皮肤等远处器官(例如皮肤)的免疫调节潜力的影响,已成为不断扩大的研究领域,伴随着人口老化的现象,可以预防策略娱乐的发展,并延迟娱乐的发展。以健康的方式按时间顺序排列。材料和方法:这是对文献的叙述性回顾,使用了皮肤老化,肠道营养不良,肠道微生物群,肠,肠,肠,益生菌和益生菌轴的描述符。被调查的电子数据库是NCBI,PubMed,Scielo和Google Scholar。调查是在2024年3月至2024年11月之间的英语和葡萄牙语进行的。总共将25篇文章用作有关研究的基础。理论参考:微生物群失衡,称为营养不良,会损害免疫功能和皮肤健康,导致皮肤衰老。饮食和药物等因素会影响营养不良及其与衰老的关系。最近的研究证实了肠道轴轴的存在,在这种情况下,益生元和益生菌对这种相互作用的调节可以促进皮肤健康益处。最终考虑:这项工作有助于未来的研究,以阐明肠道微生物相互作用的机制,尤其是制定新策略和干预措施以防止皮肤过早衰老,以健康的方式延迟年代老化并保持皮肤健康。
摘要:随着锂离子电池的使用正在扩散,大型存储系统(固定存储容器等)中的事件或大型电池和电池存放(仓库,回收商等)。)经常会导致火灾定期发生。水仍然是解决此类电池事件的最有效的灭火剂之一,通常需要大量数量。由于电池包含各种潜在有害的成分(金属及其氧化物或盐,溶剂等)和热跑诱导的电池事件伴随着复杂且潜在的多稳态排放(同时包含气体和颗粒),应考虑并仔细评估火径流水对环境的潜在影响。本文提出的测试重点是分析用于在热失控下喷洒NMC锂离子模块的径流水的组成。强调,用于消防的水很容易含有许多金属,包括Ni,Mn,Co,Li和Al,与其他碳质物种(烟灰,油粉)混合,有时在电解质中使用的溶剂有时未沉积。与PNEC值相比,污染物浓度的外推表明,对于大规模事件,径流水可能对环境有可能危害。
摘要:随着锂离子电池的使用正在扩散,大型存储系统(固定存储容器等)中的事件或大型电池和电池存放(仓库,回收商等)。)经常会导致火灾定期发生。水仍然是解决此类电池事件的最有效的灭火剂之一,通常需要大量数量。由于电池包含各种潜在有害的成分(金属及其氧化物或盐,溶剂等)和热跑诱导的电池事件伴随着复杂且潜在的多稳态排放(同时包含气体和颗粒),应考虑并仔细评估火径流水对环境的潜在影响。本文提出的测试重点是分析用于在热失控下喷洒NMC锂离子模块的径流水的组成。强调,用于消防的水很容易含有许多金属,包括Ni,Mn,Co,Li和Al,与其他碳质物种(烟灰,油粉)混合,有时在电解质中使用的溶剂有时未沉积。与PNEC值相比,污染物浓度的外推表明,对于大规模事件,径流水可能对环境有可能危害。
・ 通过扭转振动分析,由于转动惯量较小,CFRP 螺旋桨的轴径可以减小。 ・ 更换了中间轴,但没有更换螺旋桨轴,以避免在狗身上进行大型施工。