摘要 目的——本文回顾了工业 4.0 与增材制造 (AM) 的协同作用,并讨论了数据驱动制造系统与产品服务系统的集成作为工业 4.0 革命的关键组成部分。本文旨在通过数字化、数据传输、标记技术、工业 4.0 中的信息和智能功能等工具,强调工业 4.0 对 AM 的潜在影响。 设计/方法/方法——在工业化的各个阶段,制造业对数据的使用和依赖不断增加。在对工业 4.0 和 AM 的回顾中,我们讨论了成功的五大支柱,即物联网 (IoT)、人工智能、机器人技术和材料科学,它们将使供应商、生产者和用户之间的互动和相互依存达到新的水平。研究了 AM 功能的独特效果,尤其是大规模定制和轻量化,结合工业 4.0 中的数据和物联网集成,以支持更高的效率、更大的实用性和更环保的生产。这项研究还说明了如何通过使用物联网和 AM 实现工业 4.0 制造业的数字化,从而实现新的商业模式和生产实践。结果 - 讨论说明了结合物联网和 AM 的潜力,可以摆脱传统大规模生产的约束和限制,同时实现经济和生态节约。还应注意的是,这延伸到通过模拟复杂的生产流程和操作系统实现日益复杂的零件的敏捷设计和制造。本文还讨论了工业 4.0 和 AM 在基于实时数据/反馈提高产品结果的质量和稳健性方面的关系。原创性/价值 - 这项研究表明,结合物联网和 AM 的研究方法如何能够创造实践上的重大变化,从而改变生产和供应模式,从而有可能减少工业系统和产品生命周期对生态的影响。本文展示了工业 4.0 和 AM 的融合如何重塑制造业的未来,并讨论了其中涉及的挑战。
执行摘要 7 1 简介 9 1.1 研究目的和目标 9 1.2 报告结构 9 1.3 基础行业材料简介 9 2 政策背景 11 3 材料分析 13 3.1 方法论 13 3.1.1 文献收集和审查 13 3.1.2 基础材料入围名单 13 4 材料需求趋势 18 4.1 推动材料创新的法规 19 5 精选基础材料深入分析 21 5.1 铸铁和钢铁 21 5.1.1 材料生产方法和产量 21 5.1.2 材料生产和消费的新兴创新24 5.1.3 当前和未来的用途 26 5.1.4 钢铁的可持续性表现 28 5.2 铝 30 5.2.1 材料的生产方法和产量 30 5.2.2 材料生产和消费领域的新兴创新 31 5.2.3 当前和未来的用途 33 5.2.4 铝的可持续性特征 34 5.3 塑料、聚合物和复合材料 35 5.3.1 塑料和聚合物的定义 35 5.3.2 材料的生产方法和产量 35 5.3.3 材料生产和消费领域的新兴创新 36 5.3.4 当前和未来的用途 38 5.3.5 塑料、聚合物和复合材料的可持续性表现 40 5.4 铜 42 5.4.1 材料的生产方法和产量 42 5.4.2 材料生产和消费领域的新兴创新 42 5.4.3 当前和未来的用途 43 5.4.4 铜的可持续性表现 45 5.5 玻璃 45 5.5.1 材料生产方法和产量 45 5.5.2 材料生产和消费领域的新兴创新 46 5.5.3 当前和未来的用途 47 5.5.4 玻璃的可持续性表现 48 6 关键的交叉趋势 50 6.1 汽车轻量化 50 6.2 供应链循环化 52 6.3 在供应链中使用可再生电力 53 7 讨论 54 8 下一步 1 参考文献 2
腐蚀会对许多工业领域的机械结构造成巨大损害,航空业也不例外。为了在不影响安全性的情况下延长机身的使用寿命,清晰地了解飞机的腐蚀状态 (SoC) 非常重要。因此,开发适合实时监测 SoC 并在结构受到腐蚀损害时发出可靠通知的方法至关重要。迄今为止发布的结果表明,超声波(例如声发射、导波)以及电化学传感器(例如电化学噪声、阻抗谱)适用于监测与飞机相关的腐蚀,但尚未具备应用于商用飞机的技术条件。实现可靠监测系统的一个巨大问题是腐蚀现象与(通常)嘈杂的传感器数据之间的相关性。AICorrSens 项目通过开发基于超声波、电化学和环境传感器以及 AI 算法的多传感器设置来监控 SoC,从而解决了这些问题。应通过使用配备传感器的试样和演示部件进行加速腐蚀测试来生成训练数据。使用 AI 进行后续数据分析,可以克服操作噪声,从而允许当今的腐蚀检测方法在检测、定位、量化和类型化方面实时评估 SoC。该项目的目标是将创建的连续数据流转换为可通过人机界面直观理解的 SoC 分类,包括由测试活动生成的 AI 模型进行的合格腐蚀预测。该项目的结果将提高飞机的安全性和可靠性,并为飞机运营商带来明显的经济效益,因为它允许从定期检查间隔转换为基于条件的维护。资助方:奥地利研究促进署 项目:Take Off, Call 2019 联盟:CEST 电化学表面技术能力中心 (CEST)、林茨约翰内斯开普勒大学 - 结构轻量化设计研究所 (IKL)、克雷姆斯多瑙大学 - 集成传感器系统系 (DISS)、Senzoro GmbH (SENZ)。项目持续时间:2020 年 10 月 - 2023 年 9 月。
需要支持多种机械和生物功能(如实现液体运输、促进再生和修复、抵抗不确定和随时间变化的机械需求)。[1–3] Wolf-Roux(机械稳态)定律表明,骨骼会随着机械需求的变化而沉积或吸收,[1,4,5] 指出优化在多尺度材料和结构的自然设计中发挥着作用。因此,结构优化是追求性能优化的仿生工程系统的一种很有吸引力的策略;然而,自然界中观察到的一系列功能极难完全融入基于优化的工程设计过程中。在这里,我们赋予结构优化方法和旋节线结构材料,这些材料模仿自然界中观察到的几种微观结构特征,这样我们就可以直接以设计中的刚度和轻量化为目标,并间接促进由微观尺度上的旋节线孔隙度和随机性促进的其他机械和生物功能。图1显示了在几种生物系统中观察到的微结构,这些微结构具有不同的孔径、孔形、密度和方向偏好,这些特征可以通过旋节线结构材料轻松模仿。旋节线结构材料是通过将旋节线相分解中的一个相解释为微结构材料而获得的。它们的非结构化、随机微结构特征已被证明可实现理想的工程性能(例如高机械弹性[9]、高能量吸收[10]和对缺陷不敏感[11]),这些性能通常超过结构化结构材料(例如桁架和板晶格)。此外,以高斯随机场(GRF)形式对旋节线相分解进行函数近似[12,13]可以广泛可调微尺度各向异性和孔隙率,从而实现显著的微结构设计自由。 [6] 底层函数表示也使得在任意方向和孔隙度的不同旋节线类(例如,图 1 中所示的各向同性、立方、层状和柱状结构)之间转换变得轻而易举。因此,旋节线结构材料为工程部件提供了一种途径,这些部件具有嵌入的、空间变化的微尺度特征,与结构化结构材料相比,这些特征提高了工程性能并增强了可制造性。旋节线结构材料的制造多功能性还使人们能够回归经典的多尺度
飞机设计是一项迷人而又充满挑战性的任务。通常,需要实现相互对立的目标,并满足法规通常规定的限制。然而,主要的设计目标一直是安全性和可靠性,尽管在过去的几十年里,生态和经济问题补充了前者。因此,飞机设计始终是仔细考虑所有这些方面的结果,因此不仅仅是技术上的妥协。自 20 世纪初以来,飞机的基本几何布局没有太大变化;尽管如此,其技术复杂性发生了巨大变化。一个例子是轻量化设计,通过引入高性能铝合金和复合材料,已经利用了新的减轻重量的可能性。另一个例子是航空电子和电气系统设计的进步,导致飞机越来越“电动化”。所有这些发展都需要在早期开发阶段判断它们对飞机设计和性能的影响,以避免经济误判。这就是概念和初步飞机设计发挥作用的地方(参见第 2 章)。除了亚音速和跨音速运输外,超音速旅行的梦想也吸引了许多人和机构。然而,除了军用飞机外,只有协和式飞机和 TU-144 被引入客机市场。这两架飞机都只在极少数航线上使用过,而且它们的商业成功遥不可及,这是一个很好的例子,表明技术上可行的并不总是经济上合理的。尽管如此,“超音速”的热情仍然盛行,研究工作和资金仍在投入到这个主题上。然而,焦点从客机转移到超音速公务机 (SSBJ) 和高净值个人的利基市场。由于声望、便利、舒适和旅行时间的减少,它对高管和 VIP 尤其有吸引力。“这个列表并不完整;然而,这些参数可以提高企业生产力,从而证明超音速商务旅行是合理的。音爆、起飞和降落时的噪音、高油耗以及由此产生的排放被视为超音速运行的关键问题”(Schuermann 等人,2015 年)。发动机技术和机身设计的进步有助于找到与超音速飞行相关的生态和技术挑战的充分答案。由于这些问题与飞机的大小密切相关,因此可以将公务机大小的飞机视为进入实际超音速飞行的良好起点。“最近的市场研究表明,大量高级乘客愿意改乘超音速服务”(Schuermann 等人,2015 年)。事实证明,公务机大小的超音速飞机似乎找到了
• Sinchuk, Y.、Pannier, Y.、Antoranz-Gonzalez, R.、Gigliotti, M. (2019) 基于 μ-CT 的有限元模型分析含空隙的碳/环氧 3D 纺织复合材料中水分扩散引起的应力,复合结构,212:561-570。- https://doi.org/10.1016/j.compstruct.2018.12.041 • Gigliotti, M.、Pannier, Y.、Sinchuk, Y.、Antoranz-Gonzalez, R.、Lafarie-Frenot, M.C.、Lomov, S.V.(2018) X 射线微型计算机断层扫描表征无卷曲 3D 正交编织复合材料中热循环引起的裂纹,复合材料 A 部分:应用科学与制造,112:100-110。- https://doi.org/10.1016/j.compositesa.2018.05.020 • Foti, F.、Gigliotti, M.、Pannier, Y.、Mellier, D.、Lafarie-Frenot, M.C.(2018) 环境对交叉层 C/环氧层压复合材料高温疲劳的影响,复合结构,202:924-934。- https://doi.org/10.1016/j.compstruct.2018.04.065 • Sinchuk, Y., Pannier, Y., Gueguen, M., Gigliotti, M. (2017) 使用全局-局部方法对 2D 纺织复合材料中的水分膨胀进行基于图像的建模,Proc IMechE Part C:机械工程科学杂志 - 特别版:“交通工程中的轻量化设计” 客座编辑:Serge Abrate,美国南伊利诺伊大学,Vincenzo Crupi,意大利墨西拿大学,Gabriella Epasto,意大利墨西拿大学,232:1505–1519。- ISSN:0954-4062,doi:10.1177/0954406217736789 • Sinchuk, Y., Pannier, Y., Gueguen, M., Tandiang, D., Gigliotti, M. (2017) 基于计算机断层扫描的纺织复合材料水分扩散和膨胀建模与仿真,国际固体与结构杂志,154:88-96。- ISSN:0020-7683,doi:10.1016/j.ijsolstr.2017.05.045 • Gigliotti M、Pannier Y、Lafarie - Frenot MC、Grandidier JC。(2016) “飞机应用中有机基复合材料“多物理”疲劳的一些例子”。载于:《航空航天工程中的复合材料和结构》,Carrera E,编辑。Trans Tech Publications,瑞士普法菲孔;第五章,第 79-96 页。• Guigon C、Lafarie - Frenot MC、Pannier Y、Rakotoarisoa C. (2015) “环境对 3D 编织聚合物基复合材料中热循环引起的微裂纹的影响”。ICFC6,第六届复合材料疲劳国际会议。法国巴黎,第 10 页。 • Gigliotti M、Pannier Y、Foti F、Lafarie - Frenot MC、Mellier D、Luu TC。(2015) “飞机用层压和纺织有机复合材料的多物理疲劳”。ICFC6,第六届复合材料疲劳国际会议。法国巴黎,10 页。 • Foti F、Pannier Y、Gigliotti M、Lafarie - Frenot MC、Mellier D、Luu TC。(2015)“用于航空应用的层压和编织有机基质复合材料的多物理疲劳。JNC 19,第十九届全国复合材料日。里昂(法国)。• Guigon C、Lafarie - Frenot MC、Pannier Y、Olivier L、Rakotoarisoa C.(2014 年)“温度和热循环老化对 RTM 制造的聚合物基质 3D 编织复合材料性能的影响”。ECCM16,第 16 届欧洲复合材料会议。西班牙塞维利亚。8 页。• Guigon C、Pannier Y、Beringhier M、Lafarie - Frenot MC 和 Rakotoarisoa C.(2013 年)“温度和热循环对 RTM 工艺制造的 3D 编织 CMO 阻力的影响”。JNC18,第十八届全国复合材料日。法国南特。• Gigliotti,M.、Grandidier,J.C.、Lafarie-Frenot,M.C.(2014)“有机基质复合材料的老化。“案例研究”,载于《工程技术》,AM 5 322,T.I. 版,巴黎,34 页 • Gigliotti,M.,Grandidier,J.C.,Lafarie-Frenot,M.C.(2013)“有机基质复合材料的老化。建模工具”,《工程技术》,AM 5 322,T.I. 版,巴黎,17p • Lafarie-Frenot MC,Ho NQ。(2006)“热循环条件下自由边层内应力对 CFRP 板层损伤过程的影响”。复合材料科学与技术; 66: 1354-65。• Lafarie-Frenot MC、Rouquie S、Ho NQ 和 Bellenger V. (2006)“等温老化和热循环过程中 C/环氧层压板损伤发展情况比较”。复合材料 A 部分:应用科学和制造; 37: 662-71。• Rouquie S、Lafarie-Frenot MC、Cinquin J、Colombaro AM。(2005)“中性和氧化环境中碳/环氧层压板的热循环”。复合材料科学与技术; 65: 403-9。
• Sinchuk, Y.、Pannier, Y.、Antoranz-Gonzalez, R.、Gigliotti, M. (2019) 基于 μ-CT 的有限元模型分析含空隙的碳/环氧 3D 纺织复合材料中水分扩散引起的应力,复合结构,212:561-570。- https://doi.org/10.1016/j.compstruct.2018.12.041 • Gigliotti, M.、Pannier, Y.、Sinchuk, Y.、Antoranz-Gonzalez, R.、Lafarie-Frenot, M.C.、Lomov, S.V.(2018) X 射线微型计算机断层扫描表征无卷曲 3D 正交编织复合材料中热循环引起的裂纹,复合材料 A 部分:应用科学与制造,112:100-110。- https://doi.org/10.1016/j.compositesa.2018.05.020 • Foti, F.、Gigliotti, M.、Pannier, Y.、Mellier, D.、Lafarie-Frenot, M.C.(2018) 环境对交叉层 C/环氧层压复合材料高温疲劳的影响,复合结构,202:924-934。- https://doi.org/10.1016/j.compstruct.2018.04.065 • Sinchuk, Y., Pannier, Y., Gueguen, M., Gigliotti, M. (2017) 使用全局-局部方法对 2D 纺织复合材料中的水分膨胀进行基于图像的建模,Proc IMechE Part C:机械工程科学杂志 - 特别版:“交通工程中的轻量化设计” 客座编辑:Serge Abrate,美国南伊利诺伊大学,Vincenzo Crupi,意大利墨西拿大学,Gabriella Epasto,意大利墨西拿大学,232:1505–1519。- ISSN:0954-4062,doi:10.1177/0954406217736789 • Sinchuk, Y., Pannier, Y., Gueguen, M., Tandiang, D., Gigliotti, M. (2017) 基于计算机断层扫描的纺织复合材料水分扩散和膨胀建模与仿真,国际固体与结构杂志,154:88-96。- ISSN:0020-7683,doi:10.1016/j.ijsolstr.2017.05.045 • Gigliotti M、Pannier Y、Lafarie - Frenot MC、Grandidier JC。(2016) “飞机应用中有机基复合材料“多物理”疲劳的一些例子”。载于:《航空航天工程中的复合材料和结构》,Carrera E,编辑。Trans Tech Publications,瑞士普法菲孔;第五章,第 79-96 页。• Guigon C、Lafarie - Frenot MC、Pannier Y、Rakotoarisoa C. (2015) “环境对 3D 编织聚合物基复合材料中热循环引起的微裂纹的影响”。ICFC6,第六届复合材料疲劳国际会议。法国巴黎,第 10 页。 • Gigliotti M、Pannier Y、Foti F、Lafarie - Frenot MC、Mellier D、Luu TC。(2015) “飞机用层压和纺织有机复合材料的多物理疲劳”。ICFC6,第六届复合材料疲劳国际会议。法国巴黎,10 页。 • Foti F、Pannier Y、Gigliotti M、Lafarie - Frenot MC、Mellier D、Luu TC。(2015)“航空应用层压和编织有机基复合材料的多物理疲劳。JNC 19,第 19 届全国复合材料日。里昂(法国)。• Guigon C、Lafarie - Frenot MC、Pannier Y、Olivier L、Rakotoarisoa C. (2014)“温度和热循环老化对 RTM 制造的聚合物基体 3D 编织复合材料性能的影响”。ECCM16,第十六届欧洲复合材料会议。西班牙塞维利亚。8 页。• Guigon C、Pannier Y、Beringhier M、Lafarie - Frenot MC、Rakotoarisoa C. (2013)“温度和热循环对 RTM 工艺制造的 3D 编织 CMO 性能的影响”。JNC18,第 18 届全国复合材料日。法国南特。• Gigliotti, M.、Grandidier, J.C.、Lafarie-Frenot, M.C.(2014)“有机基复合材料的老化。案例研究”,《工程技术》,AM 5 322,T.I. 版,巴黎,34p • Gigliotti, M.、Grandidier, J.C.、Lafarie-Frenot, M.C.(2013)“有机基复合材料的老化。建模工具”,《工程技术》,AM 5 322,T.I. 版,巴黎,17p • Lafarie-Frenot MC,Ho NQ。(2006)“热循环条件下自由边缘层内应力对 CFRP 层压板损伤过程的影响”。复合材料科学与技术; 66:1354-65。• Lafarie-Frenot MC、Rouquie S、Ho NQ、Bellenger V. (2006)“等温老化或热循环过程中 C/环氧树脂层压板损坏发展的比较”。复合材料 A 部分:应用科学与制造; 37:662-71。• Rouquie S、Lafarie-Frenot MC、Cinquin J、Colombaro AM。(2005)“中性和氧化环境中碳/环氧树脂层压板的热循环”。复合材料科学与技术; 65:403-9。