摘要:作为一种有效的结构健康监测(SHM)技术,基于压电换能器(PZT)和导波的监测方法在空间领域引起了越来越多的关注。面对空间结构的大规模监测需求,需要大量的PZT,而这可能导致连接电缆额外重量、放置效率和性能一致性方面的问题。PZT层是针对这些问题的一种有前途的解决方案。但目前的PZT层仍然面临着大规模轻量化监测和缺乏极端空间服役条件下可靠性评估的挑战。针对这些挑战,本文提出了一种大规模PZT网络层(LPNL)设计方法,采用大规模轻量化PZT网络设计方法和基于网络分裂重组的集成策略。所开发的LPNL具有尺寸大、重量轻、超薄、灵活、形状定制和高可靠性的优势。为验证所研制的LPNL在航天服役环境下的可靠性,开展了一系列极端环境试验,包括极端温度条件、不同飞行阶段的振动、着陆撞击、飞行过载等,结果表明所研制的LPNL能够承受这些恶劣的环境条件,具有较高的可靠性和功能性。
凭借其在材料科学方面的专业知识,该集团正利用高性能创新材料加速应对当前和未来的挑战。它涵盖低碳移动解决方案,例如电池、氢和轻量化、3D 打印、更环保的涂料、生物源和可回收解决方案。该集团正努力将对联合国可持续发展目标做出重大贡献的销售额份额从目前的 51% 提高到 2030 年的 65%。
我们很高兴向您介绍 ITHEC 2020 的计划,第五届热塑性复合材料国际会议和展览会。2020 年的活动,我们将继续举办 2012 年推出的独特系列活动,重点关注轻量化结构最有前景的方面。ITHEC 将首次以虚拟活动的形式举行,这对参与者和主办方来说都是一个挑战,但它利用了智能个人交流机会和互动现场演示。
○ 研究目的 为了应对新的威胁和多样化的情况,预计轻型、紧凑但具有火力、防护性和机动性的战车系统将在未来变得有用。在这项研究中,通过将功能流体应用于悬架系统、火炮停车设备等的阻尼装置,我们将实现一种简单、紧凑且具有高可控性的装置,这将导致创建轻量化、紧凑的战车系统。目的是为其实现做出贡献。
IACMI 扩大研究设施 (SURF) 位于底特律的 Corktown 社区。IACMI 于 2015 年开始对这座建筑进行改造,认识到投资社区和在 Corktown 复兴的前端建立经济影响的重要性。SURF 是与美国制造业研究所、面向未来的轻量化创新 (LIFT) 共享的设施——这是美国唯一一个拥有两个研究所的地点,为多材料合作提供了独特的机会。这两家研究所于 2017 年为该设施举行了剪彩仪式,并自此继续建设技术进步和劳动力发展资源。
“石墨烯是一种原子级薄的碳层,是功能材料的一个很好的例子。它结合了极强的机械强度和卓越的灵活性。石墨烯对光具有高度的透明度,但不透气。它具有很高的电导性和热导性。由于这些特性,石墨烯与其他功能材料结合可用于各种应用,例如柔性和印刷电子产品或轻量化结构的复合材料。”(Thomas Seyller 教授,开姆尼茨工业大学“智能系统和材料”核心竞争力发言人,DFG 优先计划 1459“石墨烯”协调员)
北美钢铁行业引领创新和环境可持续性 钢铁是现代社会和向可持续未来过渡的重要且不可替代的材料。钢铁行业继续引领新型钢材的革命性开发,为汽车、建筑、机械、包装和能源领域的客户提供服务。我们的行业正在推动可持续建筑施工、能源传输和开发等方面的进步。目前有 3,500 多个钢材等级可供选择,大约 75% 的现代钢材是在过去 20 年内开发的。这些产品有助于减少整个经济的能源消耗和温室气体 (GHG) 排放。在北美,钢铁行业在减少炼钢过程中的能源使用和温室气体排放方面处于世界领先地位。自 1990 年以来,AISI 会员公司每吨产量的能耗降低了 35%,同期温室气体排放强度降低了 37%。除了世界领先的环保性能外,我们生产的钢铁产品还表现出卓越的可持续性性能,可最大限度地减少对环境的影响。从材料生产、使用寿命和报废的整个生命周期来看,钢铁卓越的可持续性性能可最大限度地减少对环境的影响。一个关键的例子是汽车市场,创新对于满足政府更高的燃油效率和温室气体要求至关重要。为了帮助我们的汽车制造商客户满足这些标准,钢铁行业开发了先进的材料和制造技术,从而推出了新的先进高强度钢 (AHSS) 等级——这是汽车制造业增长最快的材料。如今的钢材等级比十年前的钢材强度高出六倍,比市场上最新的铝合金强度高出三到四倍。AHSS 的强度增加使汽车制造商能够继续通过轻量化产品提供重要的性能和安全优势,同时减少其对环境和气候的整体影响。 AISI 的一项同行评议研究表明,使用先进高强度钢 (AHSS) 实现汽车轻量化可立即持续减少温室气体 (GHG) 排放量,而使用铝代替 AHSS 实现同一批车辆的轻量化则会导致温室气体排放量在数十年内大幅增加。钢铁产品 100% 可回收,每年回收的钢铁比纸张、塑料、铝和玻璃的总和还要多。美国钢铁行业回收了来自包装市场的四分之三的钢铁,几乎回收了来自包装市场的 100%
简介锂离子电池由于其高能量密度、轻量化设计和降低的成本而被广泛应用于各种应用(例如,固定电池储能、电动汽车、消费电子产品、微型移动设备)。虽然所有这些应用都使用相同的底层电池技术,但它们所集成产品的完整系统设计和架构、制造质量、安全要求和安全特性却大不相同。因此,故障的原因、频率和严重程度因产品和应用而异。到 2030 年,全球锂离子电池容量预计将增加 10-12 倍 1,2,这得益于交通电气化和电网脱碳。然而,最近因锂离子电池故障引起的火灾引起了公众的关注,并凸显了产品工程中的缺陷。