维度 1:持续月球探索 2019 年 8 月,时任美国副总统迈克·彭斯指示 NASA 向国家空间委员会提交一份“可持续月球表面探索和发展计划,包括人类初步探索火星所需的技术和能力”。由此产生的《阿尔特弥斯计划:持续月球探索与发展》3 描述了建立持续月球存在的高级理念,在月球轨道和月球表面开发和部署越来越强大和复杂的能力。这些能力包括机器人和载人系统。由 26 个航天机构组成的论坛国际空间探索协调小组 (ISECG) 已确定 31 项技术“对未来的探索任务至关重要”。4
未来的远程突击飞机(FLRAA)或陆军的新蓬特罗飞机的设计旨在在一个新的战斗世界中运作,即自治系统将成为显着的竞争者!我确实会争辩说,在现在和将来推出新的载人系统时,考虑到它们如何在自主系统变得更加普遍和杰出的世界中,这样做越来越重要。对陆军新的滨海飞机的立场令人印象深刻的是,他们这样做的核心考虑概念将如何随着合并的武器方法而变化,这是与自主系统合作和捍卫固有的合并武器方法的变化。在华盛顿特区举行的美国军队(AUSA)大会上举行的一个小组。讨论了与Flraa的前进方式。该小组由国防新闻主持,该新闻提供了
所有这些系统面临的主要挑战,与载人系统一样,始终是电力和能源。我们如何确保我们的系统具有执行任务的耐力,尤其是当它们可能在数百或数千英里之外无法加油或充电时?随着电动汽车的发展,我们在当今现代社会也看到了类似的挑战,但电力和能源永远是现代军队至关重要的关注点。《未来力量》在 2015 年夏季刊中首次介绍了这些主题;八年后,我们带着新的焦点和对同一主题的深刻文章回归。您正在阅读的当前版本主要关注电池和移动电源的科学和技术。无论是用于最新的无人潜航器还是混合动力舰队中的海上猎人等远洋船只的电源,海上服务的需求都是非常现实的。我们需要确保这些系统能够不间断地支持任务。
摘要:本文的目的是分析自主海洋系统运行中的主要实时风险,这些风险来自不同的自主性水平 (LoA)。高可靠性管理 (HRM) 是一种成熟的框架,用于评估复杂基础设施中实时操作员的表现。在本文中,该框架应用于代表不同用途和自主性水平的两种情况:一种是专注于遥控机器人 (ROV) 和海底干预的海洋水下机器人,另一种是解决带有动态定位 (DP) 系统的复杂海洋水面舰艇的操作。通常,自主系统与无人系统相关联,但一些载人系统(例如,具有复杂自动化和 DP 系统的船舶)具有可以被描述为自主的特定控制功能。本文重点介绍具有不同自主性水平和重大危险潜力的有人和无人系统。最重要的研究结果是确定了跨两个或三个 LoA 的多种不同运营状态,每种运营状态都有明显不同的风险需要实时管理。HRM 框架的应用凸显了在开发下一代自主海洋系统时实现可靠的操作员控制和在线风险管理的重要性。
无人作战飞机 (UCAV) 有望成为一种颠覆性技术,它将改变从维和到区域战争等各种作战场景中的常规军事行动。在战斗中,部队通过直接战斗或间接火力与敌人交战。间接火力或防区外交战可以保护部队,并且在可用和有效的情况下是首选。无人作战飞机有望将间接火力的概念提升到一个新的水平。它们在时间敏感的目标选择方面将比导弹更灵活,在高风险环境中比有人驾驶系统更容易消耗,并且它们的持续战斗存在将比导弹或有人驾驶系统更长。随着时间的推移,无人作战飞机可能会将有人驾驶系统(如机载预警和控制系统 [AWACS] 或联合监视和目标攻击雷达系统 [JSTARS])从诸如指挥、控制和通信保护或航母战斗群空中掩护等常规任务中解放出来。它们还可能执行大部分长航时任务,例如伊拉克上空的北方守望和南方守望。最终,无人战斗机可能会变得非常先进,以至于它们在近距离支援地面部队方面比载人系统更安全,在空对空作战中比载人飞机更成功。它们有朝一日可能会加入防空武器库,对抗战略弹道导弹或巡航导弹。技术进步、国家战略和军事变革的交汇点