摘要:CSPBBR 3量子点(QD)是光电设备的有希望的候选者。用二烷基铵(例如二二二烷基二甲基溴化物溴化物(DDAB))取代油酸(OA)和油胺(OLA)盖剂,表明外部量子效率(EQE)的含量增加了0.19%(OA/OLA)至13.4%(dd.4%)。设备的性能显着取决于QD固体中光激发载体的分解长度和迁移率。因此,我们通过构造双尺寸的QD混合物来研究DDAB限制的CSPBBR 3 QD固体中的电荷载体传输动力学。可以通过定量改变两个尺寸的QD之间的比率来监测荷兰载波的差异,从而改变了每个QD群集中载体的平均自由路径。从超快瞬态吸收光谱获得的QD固体的激发态动力学表明,由于强量量子的构造,光生的电子和孔很难在小型QD(4 nm)中使用。另一方面,大型QD(10 nm)中的光诱导的电子和孔都将与小型QD插入界面,然后进行重组过程。将载载物的不同研究与混合物中的QD组件上的蒙特卡洛模拟相结合,我们可以在10 nm cspbbr 3 qds中计算出电荷载体的差值长度为〜239±16 nm,以及电子和电子的迁移率,以及2.1(2.1(2.1(0.6))和0.6(0.6)(0.69(±0.6)(0.69)(0.69)(±0.69)(±0.69(±0.6)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±±0.6)(±±0.6)(±±±9)(±±0.6) 分别。这两个参数均表示DDAB限制的QDFIFM中有效的电荷载体传输,这合理化了其LED设备应用程序的完美性能。关键字:超快光谱,扩散长度,cspbbr 3,ddab,量子点光伏,载体传输,电荷转移■简介
最近,注意力集中在用低毒性和无毒阳离子替换PB上。理想的无铅候选者应具有低毒性,狭窄的直接带隙,高光吸收系数,较高的迁移率,低激子结合能,长载体寿命和稳定性。已经提出了几种可能毒性较小的化学兼容材料,例如SN,BI和GE作为PB的替代品,不仅降低了PB的毒性,还可以保留钙钛矿的独特光电特性。中,SN是一种环保的材料,广泛用于各种有希望的光电设备,例如太阳能电池和FET,因为它满足了电荷平衡,离子大小和协调的先决条件。[8] SN是元素周期表中的14组元素,它的离子半径(115 pm)与PB(119 pm)。像PB一样,SN具有惰性的外轨道,这对于获得金属卤化物钙钛矿的特殊电气和光学特性很重要。与基于PB的钙钛矿相比,基于SN的基于SN的钙钛矿还表现出相似的优质光电子特性,狭窄的带隙约为1.3 eV,高电荷迁移率约为600 cm 2 V -1 S -1,长载体扩散和寿命,以及高吸收系数,高吸收系数约为10 -4 cm -4 cm -1。[15]然而,由于SN在水分和氧气中环境中的稳定性较差,与PB相比,其性能较低。因此,为了环境和人类,需要进行连续而深入的研究以解决在钙钛矿场现场效应晶体管中替换SN时性能差的问题。
