简介:FM 收音机是一个非常有趣的话题!我听不清楚妈妈在厨房跟我说话。有些是选择性听力的一部分,特别是当她问作业的时候。但我能听到有人在全国各地现场唱歌。解释一下!我们 Srivastha 和 Soham 都是音乐系的学生。因此,通过无线电波传输的声音显然是一个令人着迷的课题。声音如何在如此长的距离内传输而不损失其质量?理论:我们将理论理解为声波首先由幅度或频率 (AM 或 FM) 调制,然后使用高功率天线传输。FM 接收器是一个微型电子电路,能够接收 FM 信号,消除噪音,然后放大并将其转换为人类可以听到的音频范围。我们想尝试从头开始构建它并亲自测试它的工作原理。什么是 FM 发射器?FM 发射器是一种使用非常低的功率运行并使用(频率调制)FM 波传输声音的电路。借助此类 FM 发射器,我们可以轻松地通过不同频率的载波长距离传输音频信号。这就是广播电台/塔的作用。载波的频率与具有幅度的音频信号的频率相同。FM 发射器产生从 88 HZ 到 108 MHZ 的 VHF 范围。
■闪烁是指电离层状态中的快速,局部,强烈的波动■闪烁会影响通过电离层传播的无线电信号的功率和相位■可以显着破坏基于GNSS的定位和卫星导航应用(例如信号的丢失)○TEC和闪烁指数从GNSS伪造,载波阶段和信噪比(SNR)测量值(SNR)测量值○最大每日中位延迟30分钟30分钟●NOAA国会方向:
Spirent 在生产精确、高质量的 GPS 模拟器方面有着悠久而辉煌的历史。GSS6100 秉承了客户对 Spirent 模拟系统和信号发生器所期望的一流功能、性能、可靠性和准确性的传统。GSS6100 单通道 GPS/SBAS 信号发生器专为生产测试应用而设计。标准配置包括用于 ATE 集成的 GPIB 接口、机架安装底盘和机架内年度校准等功能,方便在批量生产测试环境中使用 GSS6100。尽管 GSS6100 专为自动测试应用而设计,但它配备了 PC 软件,方便用作通用实验室信号发生器。GSS6100 将在任何给定时间生成单个模拟 GPS L1、C/A 信号或 SBAS 卫星信号(WAAS 或 EGNOS),选择在模拟开始之前进行。 GSS6100 以 GPS L1 频率 (1.57542 GHz) 生成 GPS 或 SBAS RF 卫星信号。在这两种情况下,载波都使用相关的伪随机测距码和数据消息进行调制。完全支持测距码选择和数据消息定义。信号的多普勒频移和功率电平完全可编程,因此可以在信噪比和信号动态变化的条件下对接收器进行采集测试。载波和代码相位的控制可以模拟电离层
摘要本文重点介绍了带通(BP)负数组延迟(NGD)功能的时间域分析。创新的NGD调查基于“ lill” - 形状被动微带电路的创新拓扑的时域实验。描述了特定微带形状构成的概念证明(POC)的设计原理。NGD电路的灵感来自最近分布的“ Li” - 拓扑。在时间域调查之前,研究了所研究电路的BP NGD规格是学术上定义的。作为基本定义的实际应用,本文的第一部分介绍了“ lill” - 电路的频域验证。POC电路是由2.31 GHz NGD中心频率和27 MHz NGD带宽的-8 NS NGD值指定的。“ Lill” - 电路的衰减损失约为-6。在NGD中心频率下 2 dB。 然后,用测得的S-参数的Touchstone数据代表的“ Lill”的两端子黑框模型被用于瞬态模拟。 测得的组延迟(GD)说明了测试的“ lill” - 电路在NGD方面作为BP函数,NGD等于-8。 在NGD中心频率处为1 ns。 使用高斯脉冲调节正弦载波进行BP NGD函数的时间域演示。 可以解释具有同时绘制良好同步输入和输出信号的创新实验设置。 可以观察到,正弦载波不超出NGD波段时,输出信号会延迟。2 dB。然后,用测得的S-参数的Touchstone数据代表的“ Lill”的两端子黑框模型被用于瞬态模拟。测得的组延迟(GD)说明了测试的“ lill” - 电路在NGD方面作为BP函数,NGD等于-8。在NGD中心频率处为1 ns。使用高斯脉冲调节正弦载波进行BP NGD函数的时间域演示。可以解释具有同时绘制良好同步输入和输出信号的创新实验设置。可以观察到,正弦载波不超出NGD波段时,输出信号会延迟。通过使用具有27 MHz频率带宽的高斯向上转换的脉冲,使用测量的“ Lill”电路的Touchstone S-参数从商业工具模拟中理解了BP NGD时间域响应。但是,当将载体调谐为大约等于2.31 GHz NGD中心频率时,输出信号包络线在大约-8 ns中。确认BP NGD响应的时间域典型行为,在测试期间考虑了具有高斯波形的输入脉冲信号。但是,必须在NGD带宽的功能中确定输入信号频谱。在测试后,与输入相比,测量的输出信号信封显示前缘,后边缘和时间效率的峰值。当前可行性研究的结果开放了BP NGD功能的潜在微波通信应用,特别是对于使用ISM和IEEE 802.11标准运行的系统。
1 简介 ................................................................................................................ 4 2 输出功率 .............................................................................................................. 5 2.1 载波输出功率 .............................................................................................. 5 2.1.1 测试方法和设置 ...................................................................................... 5 2.1.2 测量校准 ............................................................................................. 6 2.2 载波扫描 ............................................................................................. 7 3 杂散发射 ...................................................................................................... 10 3.1 谐波输出功率 ............................................................................................. 10 3.1.1 测试方法和设置 ...................................................................................... 11 3.1.2 测量精度 ............................................................................................. 12 3.2 RX 本振泄漏 ............................................................................................. 12 3.2.1 测试方法和设置 ...................................................................................... 13 4 频率精度 ............................................................................................................. 15 4.1 测试方法和设置 ............................................................................................. 15 5 调制带宽 ............................................................................................................. 18 5.1 调制带宽理论 ................................................................................ 18 5.2 测试方法和设置 .................................................................................. 22 6 接收器灵敏度 .............................................................................................. 24 6.1 接收器灵敏度理论 .............................................................................. 24 6.1.1 误码率 ...................................................................................... 25 6.1.2 灵敏度精度 ...................................................................................... 25 6.1.3 灵敏度测量结果可以告诉您什么?................................... 27 6.2 测试方法和配置................................................................................ 28 6.2.1 测试设置.............................................................................................. 28 6.2.2 测量校准.............................................................................................. 30 6.2.3 低成本设置.............................................................................................. 30 7 接收机选择性................................................................................................. 32 7.1 理论...................................................................................................... 32 7.2 测试方法和配置...................................................................................... 33 7.2.1 测试设置............................................................................................. 33 7.2.2 测量校准............................................................................................. 35 7.3 干扰类型............................................................................................. 35 8 电流消耗............................................................................................. 36 8.1 静态和平均电流消耗............................................................................. 36 8.2 动态电流消耗............................................................................................. 37 8.2.1 测试方法和硬件设置有功电流消耗..................................................... 37 8.3 计算平均电流消耗................................................................................ 40 9 术语表................................................................................................ 41
2.1 GPS 的三个部分................................................................................................................4 2.2 GPS 卫星星座....................................................................................................................4 2.3 GPS 设备....................................................................................................................5 2.4 载波................................................................................................................................6 2.5 调制在每个载波上的信息.......................................................................................7 2.6 C/A 和 P 码....................................................................................................................8 2.7 单点定位....................................................................................................................11 2.8 相对定位....................................................................................................................12 2.9 静态和动态定位....................................................................................................13 2.10 实时和任务后处理.....................................................................................................14 2.11 仰角和遮蔽角.....................................................................................................15 2.12 方位角.....................................................................................................................15 2.13 卫星可用性图.....................................................................................................16 2.14 天空图................................................................................................................................17 2.15 较差和较好的 GDOP ..............................................................................................................18 2.16 PDOP 图..............................................................................................................................19 2.17 常见错误.............................................................................................................................21 3.1 准确度和精密度.......................................................................................................................25 3.2 正态概率分布函数....................................................................................................25 3.3 GPS 相对准确度....................................................................................................................29 3.4 大地水准面和椭球体....................................................................................................................31 3.5 正高和椭球体高程之间的关系....................................................................................31 3.6 常规地面系统....................................................................................................................34 3.7 大地坐标系......................................................................................................................................35 5.1 GPS 项目阶段.................................................................................................................49 5.2 为达到所需水平精度建议采用的 GPS 技术.....................................................................50 5.3 代表性接收机成本,1992 年 1 月......................................................................................52 5.4 接收机选择要考虑的方面....................................................................................53 5.5 验证概念....................................................................................................................55 5.6 径向网络配置....................................................................................................................59
介绍了一种用于 Embraer 190/195 运输类飞机的新型 DC-Link VSCF AC-DC-AC 电力系统转换器。建议的转换器可以取代现有的基于 CSCF IDG 的传统系统。几架当代生产的飞机已经将 VSCF 作为主要或备用电源。过去,较旧的 VSCF 系统存在问题;然而,开关电源电子和数字控制器已经成熟,我们认为现在可以安全地集成并取代现有的为 CSCF AC 发电机供电的恒速液压传动装置。使用 IGBT 功率晶体管进行中等水平的功率转换和相对快速有效的切换。利用 VSCF 进行电力发电、转换、分配、保护和负载管理可提供传统 CSCF IDG 系统所不具备的灵活性、冗余性和可靠性。针对 E190/195 提出的 DC-Link VSCF 系统利用 12 脉冲整流器、降压转换器和 3-w 12 步逆变器(带 D-Y、Y-Y 和 Y-D 3-w 变压器)提供多个级别的 3-w 交流和直流电源,即 330/270/28 VDC 和 200/115/26 VAC。使用三个参考交流相位信号和高达 100 kHz 三角载波的传统双极双边载波脉宽调制可用于消除所有偶数和许多奇数超谐波。无源低通滤波器用于消除更高的谐波。RL 交流负载与
传统 RTK(实时动态)是一种基于 OSR 的方法,需要本地参考站的载波相位和伪距校正(或测量)。它提供几乎瞬时的收敛和厘米级定位精度;然而,它在可扩展性方面存在重大缺陷,因为 RTK 用户需要附近的站点。在 PPP 领域,为了本报告的目的,做了一些区分。PPP 被定义为一种基于 SSR 的方法,只需要校正空间信号误差(轨道、时钟、代码偏差)[1]。传统 PPP 具有可扩展性的巨大优势;然而,它的巨大挑战是收敛时间比 RTK 慢,通常用于估计各个误差贡献的状态,而这对于 RTK 来说不是必需的。PPP 的一个核心特征是估计载波相位测量模糊度。为了将模糊度解为整数,除了上述 PPP 校正(轨道、时钟、代码偏差)之外,PPP 算法还需要卫星载波相位偏差。模糊度解析技术可以实现更高的精度和更快的收敛速度。允许具有相位偏差的 PPP 将被称为 PPP-AR(模糊度解析)。在本报告中,我们还将 Fast-PPP 定义为一种为 PPP 提供本地或区域电离层校正的服务,同样可以实现更快的收敛速度。如果该服务同时提供精确的电离层和对流层校正,允许完全校正大气误差,则将其定义为 PPP-RTK,它提供几乎即时的收敛和厘米级精度,但比 PPP 消耗更多的带宽。
在默认配置下,NEO-M8P 流动站将尝试根据收到的校正数据提供最佳定位精度。一旦收到 RTCM 3 消息的输入流,它将进入 RTK 浮动模式。一旦流动站解决了载波相位模糊度,它将进入 RTK 固定模式。当流动站处于 RTK 固定模式时,相对精度可以预期精确到厘米级。通常需要至少 2 分钟,流动站才能解决载波模糊度并从 RTK 浮动模式转到 RTK 固定模式。此时间段的长度称为收敛时间。