最近,在光学参数放大器(OPA)中使用中红外(MID-IR)差异频率产生(DFG)的磷化物磷化物(CDSIP 2或CSP)的使用引起了极大的兴趣[1-4]。由于广泛的大气变速箱窗口,该光谱区域(3-5 µm)已被认为对于通信,遥感和定向能源应用很重要,该窗户允许相对较低的损失传播[5,6]。csp是一个四方点组(€4 2 m)负单轴晶体,具有较大的二阶非线性(d 36 = 84.5 pm/v),具有较大的双重双发性(-0.05)(-0.05)(-0.05),大带隙(E G = 2.45 ev),比较大的透明度范围和较低的固定性吸收率在普通的范围内供应较大的材料。 [7]以较低的导热率为代价[8]。先前已经测量了CSP的线性和二阶非线性光学(NLO)特性[8-10]。在这项工作中,我们在近红外(NIR)中测量泵浦波长(1.5 µm和2.0 µm)的非线性吸收(NLA)和非线性屈光度(NLR),并在MID-IR中选择中MID-MIR(3.0 µm m至3.0 µm至5.0 µm)。然后,我们检查了该NLA和NLR对OPA性能的影响。我们表明,在高泵送辐照度下,NLA可以通过增加泵的吸收并降低转化率的效率来成为OPA性能的限制因素。
降低骑手的阻力系数骑手还可以尝试通过流线型来降低阻力系数。阻力系数是衡量物体形状和空气在其周围流动的平稳程度的指标。如前所述,非流线型物体在其后留下较大的低压尾流,阻力系数较高。流线型物体在其后留下较小的尾流,因此阻力系数较低,总体阻力水平较低。下图说明了流线型较差的物体如何留下较大的湍流低压尾流(这又增加了它们的整体气动阻力)。
降低骑手的阻力系数骑手还可以尝试通过流线型来降低阻力系数。阻力系数是衡量物体形状和空气在其周围流动的平稳程度的指标。如前所述,非流线型物体在其后留下较大的低压尾流,阻力系数较高。流线型物体在其后留下较小的尾流,因此阻力系数较低,总体阻力水平较低。下图说明了流线型较差的物体如何留下较大的湍流低压尾流(这又增加了它们的整体气动阻力)。
降低骑手的阻力系数骑手还可以尝试通过流线型来降低阻力系数。阻力系数是衡量物体形状和空气在其周围流动的平稳程度的指标。如前所述,非流线型物体在其后留下较大的低压尾流,阻力系数较高。流线型物体在其后留下较小的尾流,因此阻力系数较低,总体阻力水平较低。下图说明了流线型较差的物体如何留下较大的湍流低压尾流(这又增加了它们的整体气动阻力)。
降低骑手的阻力系数骑手还可以尝试通过流线型来降低阻力系数。阻力系数是衡量物体形状和空气在其周围流动的平稳程度的指标。如前所述,非流线型物体在其后留下较大的低压尾流,阻力系数较高。流线型物体在其后留下较小的尾流,因此阻力系数较低,总体阻力水平较低。下图说明了流线型较差的物体如何留下较大的湍流低压尾流(这又增加了它们的整体气动阻力)。
摘要:网格中可再生能源的大规模发电的增加,需要通过廉价,可靠且可访问的大量储能技术来支撑,并在迅速和长时间内迅速提供大量电力。挤压空气储能(CAES)代表了这种存储选择,三个商业设施使用盐洞在德国,美国和加拿大进行存储运营,而CAES现在在许多国家都被积极考虑。在英国存在大量床位的Halite沉积物,并且已经托管或已考虑用于解决方案挖掘的地下气体存储(UGS)洞穴。,我们使用了在EPSRC资助的图像项目中开发的工具,已经使用了具有caes目的的UGS潜力的人,这些方程是使用Huntorf Caes工厂的操作数据验证的。根据2018年英国电力需求约为300 TWH的总理论“静态”(一次性填充)的存储能力,结果表明,最少有几十个TWH储存在盐洞中的TWH储存量,当盐洞穴中的盐库中的电力源与可再生能源的储存量相互促进,并提供了可再生电气的销量,可提供较大的电力,以供电,以提供可再生的电力,以供应量大的电力孔,以供应越来越大量的电力孔,以供应量大的电力孔,以供应越来越多的电力,以提供较大的电力范围,以提供较大的电力范围,以便提供较大的电力。努力。