这项工作引入了简化的沉积程序,用于多维(2D/3D)钙钛矿薄膜,在形成3D perovskite时,将氯化苯乙林(PEACL)处理整合到反提供的步骤中。这种同时沉积和钝化策略减少了合成步骤的数量,同时稳定卤化物钙钛矿纤维,并将所得太阳能电池设备的光伏性能提高到20.8%。使用多模式原位和其他原位特征的组合,证明PEACL在钙钛矿纤维纤维形成过程中的引入减慢了晶体生长过程,从而导致晶粒尺寸较大,从而导致较大的晶粒尺寸和较窄的晶粒尺寸,从而减少晶粒边界处的载载流量,并提高设备的性能和设备的性能和稳定性。数据表明,在退火过程中,PEACL差用于膜的表面,形成疏水(Quasi)2D结构,可保护大部分钙钛矿纤维中的perove胶剂免受湿度诱导的降解。
空中客车公司在巴黎航空展的开幕日推出了更长航程的 A321XLR,结束了数月的猜测。在 MEA 中东航空公司的确认订单和 Air Lease Corp. (ALC) 的谅解备忘录的支持下,A321XLR 的航程为 4,700 海里(双舱配置,可搭载 180 至 220 名乘客),高于 A321LR 的 4,000 海里。交付定于 2023 年开始。据空客首席商务官 Christian Scherer 称,A321XLR 是 A321LR 的下一个“进化步骤”,也是 4,700 海里较窄航线的“风险最低的飞机”,目前该航段由波音 757 执飞。他发誓,与 757 相比,A321XLR 的“燃油消耗和每座位二氧化碳排放量将减少 30%”。他指出,XLR 将能够从贝鲁特直飞开普敦;从都柏林直飞累西腓或内罗毕;从日本直飞澳大利亚;从欧洲直飞北美;反之亦然。为了适应远程任务,A321XLR 的新“空域”客舱将为所有舱位提供与长途宽体飞机相同的高舒适度座椅,包括为高级乘客提供的全平躺床。A321XLR 的最大
线性三原子分子的振动动力学由并行运行的量子信息处理设备模拟。量子设备是一组半导体量子点二聚体,在室温下通过可见光频率范围内的超快激光脉冲进行寻址和探测。考虑到胶体量子点不可避免的尺寸分散性导致的固有噪声的实际评估,并限制了可用于计算的时间。在考虑的短时间内,只有量子点的电子态对激发作出反应。使用电子态量子点 (QD) 二聚体的模型,该模型保留了基于单个 QD 的最低和第一激发态构建的激子二聚体状态的八个最低带。我们展示了如何实际测量多达 8 2 64 个量子逻辑变量并将其用于处理此 QD 二聚体电子级结构的信息。这是通过寻址 QD 的最低和第二激发电子态来实现的。使用较窄的激光带宽(较长的脉冲),只能相干地寻址较低带的激发态,从而实现 4 2 16 个逻辑变量。这已经足以模拟两个振荡器之间的能量传递和振动分子中的相干运动。
儿童的成熟生理反映在更复杂的给药方案中,以在儿科一生中达到目标暴露[1]。对于多种药物,如果满足以下要求,治疗药物监测(TDM)可能支持药物治疗的优化:(1)治疗范围较窄,(2)变异性大,(3)已知的浓度-效应关系,(4)没有可测量的效果。模型信息精准给药(MIPD)是TDM的下一步,最近受到了更多的关注,因为它可以作为帮助个体化给药的有力工具[2]。特别是,儿科药物治疗可能会受益于这种临床决策支持(CDS)的发展,并超越复杂的给药方案,实现更加个性化的给药。在本期期刊中,Hartman 等人[ 3 ] 评估根据基于模型的剂量指南对危重新生儿和儿童给药的万古霉素、庆大霉素和妥布霉素在 TDM 期间的目标达成情况。尽管如此,作者仍然观察到这三种药物的亚治疗浓度和超治疗浓度的比例很大。我们非常感谢他们在实施更简化的剂量指南后评估目标达成情况的主动性
生物相容性,除了提供持续的药物释放和最佳药物生物利用度。1,2纳米重沉淀,也称为界面沉积或溶剂位移,是纳米颗粒(NP)制造的最多采用的技术之一,由于其简单性,良好的可重复性,可扩展性的易用性,可扩展性以及产生较小尺寸的小NP的可行性,尺寸较窄。3,4从溶剂系统中所需的成分(聚合物/药物)的降水或相位分离被认为是使用这种方法进行NP制造的典型过程。5 - 7,而相分离可以通过溶剂中的任何物理变化(反应系统的任何物理变化)诱导,例如温度,pH或组件溶解度的任何变化。3,4,8,9我们选择了常用的溶剂/反溶剂系统来探索药物溶解度和PLGA过饱和对药物被纳米颗粒捕获的能力的作用。使用这种纳米沉淀方法制造药物加载的PLGA NP,需要将PLGA和药物溶解在水上可见的有机溶剂中,然后将其与水溶液(水/水/水溶液)彻底混合,以实现取代状态并诱导PLGA沉淀。3,6,10
钙循环过程基于 CaCO 3 和 CaO 之间的可逆反应,近年来作为一种有前途的热化学储能系统引起了人们的极大兴趣,该系统可集成到聚光太阳能发电厂 (CaL-CSP) 中。该系统的主要缺点是 CaO 转化不完全及其烧结引起的失活。在本文中,通过使用定义明确且粒度分布较窄的标准石灰石颗粒进行实验性多循环测试,评估了粒度对这些失活机制的影响。结果表明,当在低温氦气中进行煅烧时,CaO 多循环转化主要受益于使用小颗粒。然而,只有对于低于 15 l m 的颗粒,这种增强才显著。另一方面,在高温 CO 2 中煅烧引起的强烈烧结使粒度与多循环性能的相关性降低。最后,SEM 成像表明,在氦气中进行煅烧时,活性丧失的机制主要是孔隙堵塞,而在高温 CO 2 中进行煅烧时,由于烧结导致的表面积大量损失是失活的原因。2019 作者。由 Elsevier BV 代表开罗大学出版。这是一篇根据 CC BY-NC-ND 许可证开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
我们研究了使用量子最优控制在 87 Sr、ad = 10 维(四进制)希尔伯特空间中实现 I = 9 / 2 核自旋状态的幺正映射的能力。通过核自旋共振和张量交流斯塔克位移的组合,仅通过调制射频磁场的相位,该系统即可实现量子可控。碱土金属原子(例如 87 Sr)由于复合线较窄且激发态的超精细分裂较大,因此具有非常有利的品质因数。我们用数字方式研究了量子速度极限、最优参数以及任意状态制备和完整 SU(10) 映射的保真度,包括由于光移激光引起的光泵浦而产生的退相干。我们还研究了使用稳健控制来减轻由于光移不均匀性而导致的一些失相。我们发现,当 rf Rabi 频率为 rf 且光移不均匀性为 0.5% 时,我们可以在时间 T = 4.5 π/ rf 内制备任意 Haar 随机状态,平均保真度 ⟨ F ψ ⟩= 0.9992,并在时间 T = 24 π/ rf 内制备任意 Haar 随机 SU(10) 映射,平均保真度 ⟨ FU ⟩= 0.9923。
对治疗结果的监测可以帮助患者及时,准确地跟踪和量身定制药物剂量,从而调整所施用剂量,以保持浓度在治疗窗口内。可靠的体内药物释放信息和疾病进展的评估不仅可以帮助减少副作用,还可以提高治疗功效。实现这一目标的一种策略是Theranostics。本质上,“疗法”一词是指成像和治疗的整合,通常是基于使用微型和纳米载体的。利用分子成像剂,治疗药为在体内追踪治疗剂提供了诱人的潜力。7在临床实践中,疗法通常会用成像和治疗剂标记或包装,旨在无创评估局部疾病进展,载体的定量确保和药物释放。8这在治疗癌症或中枢神经系统(CNS)疾病中特别有用,由于治疗指数狭窄,肾脏清除率较窄,较高的肾脏清除率,较高的生理障碍以及对多药耐药性的敏感性,药物递送面临挑战。疗法,包括高载荷能力,长血液循环时间,在不适性位点的选择性积累或靶向特定的分子改变。9
摘要:可再生能源发电是应对能源消耗快速增长的一种有希望的解决方案。然而,可再生资源(如风能、太阳能和潮汐能)的可用性是不连续和暂时的,这对下一代大型储能装置的生产提出了新的要求。由于成本低、原材料极其丰富、安全性高和环境友好,水系可充电多价金属离子电池(AMMIB)最近引起了广泛关注。然而,一些挑战阻碍了 AMMIB 的发展,包括其电化学稳定性较窄、离子扩散动力学较差以及电极不稳定。过渡金属二硫属化物(TMD)因其独特的化学和物理性质而被广泛研究用于储能装置。层状 TMD 的宽层间距离对于离子扩散和插层来说是一种很有吸引力的特性。本综述重点介绍了 TMD 作为基于多价电荷载体(Zn 2+ 、Mg 2+ 和 Al 3+ )的水系可充电电池阴极材料的最新进展。通过本综述,重点介绍了高性能 AMMIB 的 TMD 材料的关键方面。此外,还讨论了开发改进型 TMD 的其他建议和策略,以启发新的研究方向。
钙循环过程基于 CaCO 3 和 CaO 之间的可逆反应,近年来作为一种有前途的热化学储能系统引起了人们的极大兴趣,该系统可集成到聚光太阳能发电厂 (CaL-CSP) 中。该系统的主要缺点是 CaO 转化不完全及其烧结引起的失活。在本文中,通过使用定义明确且粒度分布较窄的标准石灰石颗粒进行实验性多循环测试,评估了粒度对这些失活机制的影响。结果表明,当在低温氦气中进行煅烧时,CaO 多循环转化主要受益于使用小颗粒。然而,只有对于低于 15 l m 的颗粒,这种增强才显著。另一方面,在高温 CO 2 中煅烧引起的强烈烧结使粒度与多循环性能的相关性降低。最后,SEM 成像表明,在氦气中进行煅烧时,活性丧失的机制主要是孔隙堵塞,而在高温 CO 2 中进行煅烧时,由于烧结导致的表面积大量损失是失活的原因。2019 作者。由 Elsevier BV 代表开罗大学出版。这是一篇根据 CC BY-NC-ND 许可证开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。