摘要背景:儿童营养不良是一个重大的公共卫生问题,需要特别关注才能实现 2025 年全球营养目标。中度急性营养不良 (MAM) 表现为消瘦(身高体重偏低),影响 3300 万 5 岁以下儿童,但目前尚无全球治疗指南。我们最近对 12-18 个月大的孟加拉国 MAM 儿童进行了一项针对微生物群的辅食配方 (MDCF-2) 的随机对照临床研究。结果显示,每天新鲜制备的 MDCF-2 比标准的即食补充食品 (RUSF) 更能改善体重增长,这种效果与修复 MAM 儿童肠道微生物群落发育中断有关。为了测试这些结果在其他地区急性营养不良儿童中的普遍性,迫切需要一种包装好的、保质期长的、感官可接受的配方,该配方与 MDCF-2 生物等效。本报告描述了一项临床研究的方案,该研究旨在评估符合这些标准的候选配方。方法:将对 8-12 个月大的孟加拉国 MAM 儿童进行一项随机单盲研究,以比较替代的保质期长的 MDCF 原型与每天新鲜生产的当前 MDCF-2 配方的功效。V4-16S rDNA 扩增子和散弹枪测序数据集将从治疗前、治疗期间和治疗后从每个组中的每个儿童采集的粪便 DNA 样本中生成,以确定对 MDCF-2 有反应的细菌类群的丰度。将通过量化使用新鲜制备的 MDCF-2 治疗 4 周后 MDCF-2 反应性肠道细菌类群的变化与使用原型 MDCF 治疗后其丰度变化之间的差异来评估疗效。等效性定义为,在接受测试 MDCF 的参与者中,治疗 4 周后,与对 MDCF-2 的反应相关的粪便细菌类群的代表性没有统计学上的显著差异。讨论:本次试验旨在确定可扩展、保质期长的 MDCF-2 配方在 8-12 个月大的孟加拉国中度急性营养不良儿童中微生物群修复的可接受性和等效性。
摘要背景:儿童营养不良是一个重大的公共卫生问题,需要特别关注才能实现 2025 年全球营养目标。中度急性营养不良 (MAM) 表现为消瘦(身高体重偏低),影响 3300 万 5 岁以下儿童,但目前尚无全球治疗指南。我们最近对 12-18 个月大的孟加拉国 MAM 儿童进行了一项针对微生物群的辅食配方 (MDCF-2) 的随机对照临床研究。结果显示,每天新鲜制备的 MDCF-2 比标准的即食补充食品 (RUSF) 更能改善体重增长,这种效果与修复 MAM 儿童肠道微生物群落发育中断有关。为了测试这些结果在其他地区急性营养不良儿童中的普遍性,迫切需要一种包装好的、保质期长的、感官可接受的配方,该配方与 MDCF-2 生物等效。本报告描述了一项临床研究的方案,该研究旨在评估符合这些标准的候选配方。方法:将对 8-12 个月大的孟加拉国 MAM 儿童进行一项随机单盲研究,以比较替代的保质期长的 MDCF 原型与每天新鲜生产的当前 MDCF-2 配方的功效。V4-16S rDNA 扩增子和散弹枪测序数据集将从治疗前、治疗期间和治疗后从每个组中的每个儿童采集的粪便 DNA 样本中生成,以确定对 MDCF-2 有反应的细菌类群的丰度。将通过量化使用新鲜制备的 MDCF-2 治疗 4 周后 MDCF-2 反应性肠道细菌类群的变化与使用原型 MDCF 治疗后其丰度变化之间的差异来评估疗效。等效性定义为,在接受测试 MDCF 的参与者中,治疗 4 周后,与对 MDCF-2 的反应相关的粪便细菌类群的代表性没有统计学上的显著差异。讨论:本次试验旨在确定可扩展、保质期长的 MDCF-2 配方在 8-12 个月大的孟加拉国中度急性营养不良儿童中微生物群修复的可接受性和等效性。
简介肺癌是全球癌症死亡的主要原因,估计每年有超过 100 万人死于癌症 (1, 2)。不幸的是,肺癌的预后仍然不容乐观,5 年生存率约为 15% (3)。针对致癌驱动因素的分子靶向疗法取得了新进展,带来了重大突破,但 KRAS 的激活突变仍然无法用药 (4, 5)。主要通路(如 RAF/MEK/ERK 和 PI3K/AKT/mTOR 网络)受激活的 KRAS 调控,从而促进癌症存活。作为抗击肺癌的重要组成部分,我们需要更好地了解癌症生物学,并增加受益于癌症治疗的人群。Hippo 通路最早是在果蝇的组织生长基础上发现的,它是一种强大的调节器,可控制器官生长、细胞分化和组织稳态 (6)。高度相关的转录调节因子是相关蛋白 (YAP) 和具有 PDZ 结合基序的转录辅激活因子 (TAZ) 是细胞增殖和分化过程中结构和结构特征的基本来源 (7, 8)。近年来,YAP/TAZ 引起了广泛关注,因为它是多种癌症特征的触发因素,并且已证明 YAP/TAZ 活性对于发展、进展和转移至关重要 (9)。最近的研究将癌症中 YAP/TAZ 的复杂性与其他癌症相关因子和通路联系起来,例如 KRAS、APC、LKB1、异常 GPCR 信号和 WNT 信号 (10)。在肺癌中,YAP 的异常表达与对治疗药物的耐药性、癌症进展和转移到远处部位(例如淋巴结和脑)有关 (11, 12)。 Hippo 通路失调主要由细胞核中的 YAP 进行,研究表明,在约 65% 的非小细胞肺癌中,该通路会在细胞核中诱导生长调节通路 (13)。此外,肺癌患者中 YAP 表达升高与预后不良有关 (9, 14)。尽管最近在理解癌症领域的 YAP 方面取得了进展,但 YAP 在细胞或组织中在肺癌肿瘤发生中的作用仍有待探索。维替泊芬是一种用于眼科疾病光动力疗法的光激活化合物,具有
拥有超过 25 年的工业/学术从业经验,曾在 C-DOT、印度科学研究所 (IISc.)、维拉诺瓦大学和宾州州立大学伯克分校担任要职。最初在远程信息处理发展中心 (C-DOT) 担任小组组长,拥有超过 3 年的工业经验,管理着大约 20 人,拥有大量预算、大型原型车间和雄心勃勃的目标。主要成就包括 - 从头开始设计电话交换机的电子包装、建立文档流程和内部代码/标准/流程、创建内部开发的原型车间。开发原型并开发供应商以在本土生产这些设备并进行批量供应,从而实现印度电信的现代化。然后在 IISc 任职期间参与了机器人研究 - 设计和开发机器人并研究人工智能、自动化等。然后在路易斯安那州立大学攻读硕士学位期间,致力于使用 3D 打印开发机器人夹持器,并以人手的 MRI 数据作为论文。博士研究涉及上臂动力矫形器的控制,该研究自发表以来已被引用超过 200 次。在宾大博士后期间开发了触觉基元。在维拉诺瓦大学开发了机电一体化选修课和辅修课,目前仍在不断发展。伯克斯机械工程项目 (ME@Berks) 的创始人和现任项目主席。负责设置项目课程、技术选修课、必要的实验室和课程安排。通过购买、指定和订购必要设备以及设置实验来设置 ME 项目所需的实验室。该项目的学生人数从 2013 年的 7 人增加到现在的 180 人左右。聘请了数名教员、1 名技术员,指导了数名新的终身教职和非终身教职人员,自 2007 年加入宾州州立大学伯克分校以来,担任了越来越多的领导职务。在 2015 年获得该项目首个六年认证的项目中发挥了领导作用。积极参与 ASEE、ASME、AGMA 和 APS 等专业协会的领导工作,并通过审阅手稿、在委员会任职等提供服务。为整个社区提供志愿服务。
背景:围产期中风 (PS) 是偏瘫性脑瘫 (CP) 的主要原因。新生儿磁共振成像 (MRI) 中皮质脊髓束的受累可预测偏瘫性 CP 患者的运动结局。然而,对于 PS 出现较晚的患者,无法进行早期 MRI 检查,因此预测偏瘫严重程度仍是一项挑战。目的:评估有 PS 病史的儿童围产期缺血性中风后基底神经节、杏仁核、丘脑和海马的体积与手部运动功能的关系,并比较 PS 儿童和健康对照者的皮质下结构体积。方法:从爱沙尼亚儿童中风数据库招募患有动脉缺血性中风 (AIS) (n = 16) 和脑室周围静脉梗塞 (PVI) (n = 18) 的足月出生 PS 儿童。在儿童时期(4-18 岁)进行 MRI 检查,并计算基底神经节、丘脑、杏仁核和海马的体积。将中风患者的结果与 42 名年龄和性别匹配的健康对照者的结果进行比较。通过辅助手评估 (AHA) 评估受影响的手部功能,并通过手动能力分类系统 (MACS) 进行分类。结果:与对照组相比,AIS 儿童的同侧和对侧丘脑、同侧苍白球、伏隔核和海马的体积较小(p < 0.005)。 AIS 儿童的手部功能受损与同侧丘脑、壳核、苍白球、海马、杏仁核和对侧杏仁核较小 (r > 0.5; p < 0.05) 以及对侧壳核和海马体积较大 (r < - 0.5; p < 0.05) 相关。与对照组相比,患有 PVI 的儿童的同侧尾状核、苍白球、丘脑 (p ≤ 0.001) 和海马 (p < 0.03) 较小。在患有 PVI 的儿童中,同侧和对侧丘脑以及同侧尾状核体积较小与手部功能受损 (r > 0.55; p < 0.05) 相关。结论:无论围产期中风亚型如何,患侧丘脑体积较小与手部功能较差有关。手部功能与其他皮层下结构体积差异之间的相关性模式在 PVI 儿童和 AIS 儿童之间有所不同。皮层下结构的评估对于预测围产期中风后的运动结果非常重要。
接受雄激素剥夺疗法治疗的前列腺癌患者通常会在几年后复发,并逐渐发展为去势抵抗性前列腺癌 (CRPC)。肿瘤细胞可塑性的作用,包括转分化和上皮-间质转化等过程,在雄激素受体 (AR) 不敏感肿瘤变体的发展中起着关键作用 ( 1 )。细胞可塑性可能通过不同的转录组重编程机制有利于 AR 信号传导的重新激活,从而允许 CRPC 进展和转移。有趣的是,解剖这些机制可以发现可以作为治疗靶点的侵袭性肿瘤细胞的新弱点。Zhao 等人最近的研究 ( 2 ) 发现加压素受体 1a (AVPR1a) 是表达 AR 辅激活因子 VAV3 和组成性活性 AR 变体 AR-V7 的 CRPC 中的关键效应因子。他们证明 AVPR1a 的异位表达能够产生去势抵抗性,而受体配体的激动剂治疗,天然激素精氨酸加压素可激活 ERK 和 CREB,这两种信号分子已知会促进前列腺癌进展。有趣的是,AVPR1a 的消耗或选择性 AVPR1a 拮抗剂 relcovaptan 的抑制导致 CRPC 细胞增殖减少和体内骨转移生长减少。我们完全同意作者的观点,即 AVPR1a 可以成为 CRPC 治疗的潜在靶点。我们认为有必要对 relcovaptan 进行临床试验,特别是对于治疗选择有限的骨转移性疾病患者。然而,我们想指出的是,这些结果可能揭示了加压素系统相关药物对抗前列腺癌细胞的其他尚未开发的抗肿瘤特性。我们研究小组已报道,加压素类似物去氨加压素(加压素受体 2 (AVPR2) 的选择性激动剂)可显著降低 AR 阴性 CRPC 中的肿瘤细胞生长和迁移 ( 3 )。体外暴露于去氨加压素还会在侵袭性 CRPC 细胞中诱导神经内分泌标志物嗜铬粒蛋白和神经元特异性烯醇化酶急剧下降 ( 3 )。在前列腺癌中,神经内分泌转分化已知与向 AR 无差异和转移表型的转变有关。此外,最近在无胸腺裸鼠原位和异位 CRPC 模型中的研究表明,多西他赛与去氨加压素联合使用可增强疗效 ( 4 , 5 )。
关键词定义:学年:两个连续的(一个奇数+一个偶数)学期构成一个学年。基于选择的学分制(CBCS):CBCS 为学生提供从规定课程(选修课、辅修课或软技能课程)中进行选择的机会。课程:通常称为“论文”,是课程的一个组成部分。所有课程不必具有相同的权重。课程应定义学习目标和学习成果。课程可能设计为包括讲座/辅导/实验室工作/实地工作/外展活动/项目工作/职业培训/口试/研讨会/学期论文/作业/演示/自学等。或其中一些的组合。学分:衡量课程作业的单位。它决定了每周所需的教学小时数。一个学分相当于每周一小时的教学(讲座或辅导)或两小时的实践工作/实地工作。绩点:这是 10 分制中分配给每个字母等级的数字权重。学分:它是课程绩点和学分数的乘积。字母等级:它是学生在该课程中表现的指标。成绩用字母 O、A+、A、B+、B、P 和 F 表示。 学期平均绩点 (SGPA):它是衡量一个学期内完成工作表现的标准。它是学生在一个学期内注册的各个课程中获得的总学分与该学期修读的课程总学分之比。应精确到小数点后两位。累计平均绩点 (CGPA):衡量学生所有学期的总体累计表现。CGPA 是学生所有学期各课程获得的总学分与所有学期所有课程总学分之和的比率。应精确到小数点后两位。课程:授予学位、文凭或证书的教育课程。学期:每学期应有 16 周的教学。奇数学期可安排在六月至十一月,偶数学期可安排在十二月至五月。成绩单、成绩单或证书:根据所获成绩,每学期结束后将向所有注册学生颁发成绩证书。成绩证书将显示课程详细信息(代码、标题、学分数、所获成绩)以及该学期的 SGPA 和截至该学期获得的 CGPA。课程类型:课程可分为三类:核心课程、选修课程和
• 制定政策限制在校园内进行营销的国家:学校是限制超加工垃圾食品营销的重要场所。即将发布一张专门针对校内营销政策的单独地图。制定此类政策的国家包括:哥斯达黎加、厄瓜多尔、匈牙利、波兰、西班牙和乌拉圭。(WCRF 营养数据库)• 制定政策仅限制特定产品类型营销的国家:立陶宛和拉脱维亚都有限制能量饮料营销的法规。(WCRF 营养数据库)• 伊朗:伊朗禁止对有害健康的产品进行广告宣传,包括一些不健康的食品和饮料。这项法律并不关注面向儿童的营销,并且面临实施和执行挑战,尤其是在广播媒体领域;因此,目前它尚未包含在本资源中。 ( Abachizadeh 等人,2020 年) • 泰国:自 2017 年起,禁止所有母乳替代品和婴儿辅食广告。幼儿食品不得与母乳替代品相关或交叉推广,因为广告针对的是成年看护人。( WCRF 营养数据库) • 保加利亚:保加利亚 2020 年食品法案禁止在任何形式的商业传播中使用儿童作为表演者,宣传含有不符合健康营养要求的营养素和具有营养或生理作用的物质的食品。鉴于此限制范围狭窄,仅限儿童诉求,因此此政策未包括在此处。一些消息来源还表示,2020 年食品法案将限制在电视和印刷品中针对儿童的不健康食品宣传材料,但我们无法找到实施指南或证据来更详细地描述这一政策要素,因此此处也未将其包括在此处。 (WCRF NOURISHING 数据库;保加利亚食品法)• 英国:英国非广播广告和直接及促销营销准则(CAP 准则,2017 年实施)旨在限制非广播媒体中的不健康食品营销,包括平面广告、电影广告、互联网/在线广告、商业电子邮件、病毒式广告、广告游戏、游戏内广告、短信、直邮、竞赛、特别优惠和促销。CAP 准则未包含在此处,因为它不是法定性质的,而是由英国广告行业自我监管。虽然广告商资助的广告实践委员会和广告标准局 (ASA) 编写和监督 CAP 和 BCAP(广播)准则,但英国政府通信办公室 (Ofcom) 在法律上仅负责 BCAP 准则。(asa.org.uk)
*截至 2024 年 1 月 21 日 旧金山机场凯悦酒店 • 加利福尼亚州伯林盖姆 2024 年 1 月 22 日星期一 会议:3D 成像与应用 会议:3D/4D 扫描与运动估计 I 上午 8:45 - 上午 10:10 / 房间:Grand Peninsula F 会议主席:Tyler Bell,爱荷华大学(美国) 上午 8:45 欢迎 上午 8:50 JIST-first:使用深度归一化标准的相机运动估计方法 (3DIA-100) Seok Lee,KOREATECH(韩国) 上午 9:10 用于远距离户外操作的具有多抽头像素的 VGA 光追踪飞行时间 CMOS 图像传感器 (3DIA-101) Kamel Mars 1、Yugo Nakatani 1、Seiya Ageishi 1、Masashi Hakamata 1 、 崎田智明 2、 井口大辅 2、 早川润一郎 2、 近藤隆 2、 安富庆太 1、 香川敬一郎 1、 川人正司 1; 1 静冈大学和 2 FUJIFILM(日本)上午 9:30 使用强度数据立体估计扩展激光雷达深度范围 (3DIA-102) Filip Taneski 1 、Tarek Al Abbas 2 和 Robert Henderson 1 ; 1 爱丁堡大学和 2 Ouster, Inc.(英国)上午 9:50 基于深度学习的光场图像压缩作为具有附加环路滤波的伪视频序列(3DIA-103)Soheib Takhtardeshir 1、Roger Olsson 1、Christine Guillemot 1,2 和 Mårten Sjöström 1; 1 中瑞典大学 (瑞典) 和 2 INRIA (法国) 会议:计算成像会议:生成即插即用 8:45 AM - 10:20 AM / 房间:大半岛 C 会议主席:Charles A. Bouman,普渡大学 (美国) 8:45 AM 欢迎 8:50 AM 主题演讲:通过直接迭代反演进行图像恢复 (InDI) (COIMG-117) Mauricio Delbracio 和 Peyman Milanfar,谷歌研究院 (美国) 9:20 AM 使用基于分数的生成先验的可证明概率成像 (COIMG-118) Yu Sun 1、Zihui Wu 1、Yifan Chen 2、Berthy T. Feng 1 和 Katherine L. Bouman 1; 1 加州理工学院和 2 库朗研究所(美国)上午 9:40 Transformers 用于侵袭性黑色素瘤显微镜幻灯片图像分割 (COIMG-119) Franklin Wang 1 、Michael Wang 2 、Avideh Zakhor¹ 和 Timothy McCalmont²;1 加州大学伯克利分校和
简介 肝脏中脂质的代谢、储存和流动在饥饿、饮食引起的肥胖、糖尿病和非酒精性脂肪性肝炎 (NASH) 中起着核心作用。肝脏在从头脂肪生成的主要位点和脂质氧化的主要位点之间切换时,脂质代谢的动态范围非常大。脂质合成、吸收、输出和氧化的平衡在代谢综合征的进展和发病机制中起着至关重要的作用,对于脂肪肝和 NASH 的发病率不断上升尤为重要。然而,就脂质代谢的作用而言,控制从正常代谢生理向病理生理转变的机制尚不清楚。从头合成或从饮食中吸收的脂肪酸以甘油三酯 (TG) 的形式储存在脂质滴中,并在能量不足时被动员起来,为线粒体的氧化代谢提供脂肪酸。在大多数情况下,甘油三酸酯水解酶脂肪甘油三酸酯脂肪酶 (Atgl;也称为 Pnpla2、desnutrin) 会调节甘油三酸酯从甘油三酸酯中释放脂肪酸 (1, 2)。Atgl 是甘油三酸酯水解中的第一个速率设定酶 (1–3),Atgl 或其辅激活剂 Cgi-58 的突变会导致人类中性脂质储存病 (4, 5)。这些疾病以及小鼠中 Atgl 的完全丧失会导致线粒体脂肪酸氧化缺陷。无法调动甘油三酸酯会导致线粒体缺乏脂肪酸并限制氧化代谢。此外,甘油三酸酯水解缺陷已显示表现出显著的转录缺陷 (3, 6–10)。也就是说,脂肪酸从脂质滴中释放是 Ppar α 介导的脂肪酸氧化转录编程调节的重要调节因子。因此,Atgl 对于提供脂肪酸氧化的底物和协调维持脂肪酸氧化所需的转录程序都很重要。脂肪酸在线粒体中被氧化,为肝细胞提供 ATP 和 NADH,以促进糖异生并产生乙酰辅酶 A,即生酮作用的碳底物。这使得肝脏能够缓冲血糖并在食物匮乏期间为高度氧化的组织提供替代燃料(酮体)。脂肪酸氧化在许多生物过程中的重要性从导致人类疾病的该途径中的多个突变中可以看出(11)。长链脂肪酸 β 氧化受活性脂肪酸(酰基辅酶 A)从细胞质到线粒体基质的受控易位控制。这是由连续的酰基转移酶肉碱棕榈酰转移酶 1 和