传感器融合一直是数据分析及其应用领域的焦点话题之一。个体传感信息通常用于揭示底层过程动态并识别其中的潜在变化。这些系统通常配备有(可能)不同模态的多个传感器。这些问题表明需要融合分布式和异构信息,以便实时准确推断关键系统的状态。为此,本文开发并验证了分布式物理过程(例如,船上辅助系统)中的故障检测和分类方法。文献中提出了几种传感器融合方法来解决故障检测问题,包括线性和非线性滤波器、自适应模型参考方法和基于神经网络的估计方案。然而,据作者所知,这些技术尚未应用于船载系统,因为存在一些固有的困难,包括:(可能)信号的非平稳行为、过程动态的潜在非线性、输入输出和反馈相互作用、多模态数据的缩放和对齐以及乘性过程噪声。上述一些问题可以在一定程度上简化或通过更简单的解决方案来近似。示例包括线性和线性化建模和贝叶斯估计技术(例如扩展卡尔曼滤波和粒子滤波)
传感器融合一直是数据分析及其应用的重点主题之一。个体传感信息通常用于揭示潜在的过程动态并识别其中的潜在变化。这些系统通常配备具有(可能)不同模态的多个传感器。这些问题表明需要融合分布式和异构信息,以便实时准确推断关键系统的状态。为此,本文开发并验证了分布式物理过程(例如,船上辅助系统)中的故障检测和分类方法。文献中提出了几种传感器融合方法来解决故障检测问题,包括线性和非线性滤波器、自适应模型参考方法和基于神经网络的估计方案。然而,据作者所知,这些技术尚未应用于船上系统,因为存在一些固有的困难,包括:(可能)信号的非平稳行为、过程动态的潜在非线性、输入输出和反馈相互作用、多模态数据的缩放和对齐以及乘性过程噪声。上述一些问题可以在一定程度上简化或通过更简单的解决方案来近似。例如线性和线性化建模和贝叶斯估计技术(例如扩展卡尔曼滤波和粒子滤波)[1][2]。研究人员还使用了软计算
GTI 的专业知识涵盖了此类基于视觉的框架所涉及的所有必要研究领域。人们一直在努力研究增强型 2D 分割技术 [1] [2]、通过多个线索描述符进行 2D 跟踪 [3] 以及集中式网络中的 3D 跟踪 [4],并且仍在继续。还有一些与 3D 重建 [5] 和相关自动校准技术相关的工作。移动环境研究主要与安全应用有关,例如本文中描述的基于视频的 ADAS,多年来这一直是该小组的重要研究方向,现在随着 I-WAY 项目的发展,这一方向比以往任何时候都更加活跃。大量研究工作一直在指导基于视频的 ADAS 的开发,并在许多国际会议上发表 [6]-[13]。
