许多跨学科科学研究都需要对野火进行遥感,包括野火对生态的影响。几十年来,这项研究一直受到空间分辨率不足和探测器在短波和中波红外波长处饱和的阻碍,而高温 (>800 K) 表面的光谱辐射最为显著。为了解决这个问题,我们正在开发一种紧凑型高动态范围 (HDR) 多光谱成像仪。紧凑型火灾红外辐射光谱跟踪器 (c-FIRST) 利用数字焦平面阵列 (DFPA)。DFPA 由最先进的高工作温度屏障红外探测器 (HOT-BIRD) 和数字读出集成电路 (D-ROIC) 混合而成,具有像素内数字计数器以防止电流饱和,从而提供动态范围 (>100 dB)。因此,DFPA 将能够对温度变化范围从 300 K 到 >1600 K(燃烧的火灾)的目标进行非饱和高分辨率成像和定量检索。凭借从 500 公里的标称轨道高度解析地球表面 50 米级热特征的分辨率,一次观测即可捕获野火的全部温度和面积以及冷背景,从而增加每个返回字节的科学内容。使用非饱和 FPA 是一种新颖的做法,它克服了以前高辐射值使 FPA 像素饱和(从而降低了科学内容)的问题,并展示了遥感方面的突破性能力。因此,c-FIRST 适用于量化野火排放,这对于确定其对全球生态系统的影响至关重要。 c-FIRST 的 FPA 采用 InAs/InAsSb HOT-BIRD 外延材料制作,像素间距为 20 m,探测器阵列为 1280x480 格式,并与模拟 DROIC 混合。DFPA 的 50% 截止点为 ~4.5um,在 140K 工作温度下,整个 QE 光谱范围内测得的外部 QE~50%。我们将积分时间固定在 6 毫秒,以便在以 150 Hz 帧速率观察正常 300K 背景场景时在 MWIR 波段获得良好的灵敏度。对于标准模拟 ROIC,探测器像素在目标温度 ~700 K 时很容易饱和。当 D-ROIC 在 16 位模式下运行时,我们可以将饱和温度显著提高到 ~1100 K。当 D-ROIC 在超 HDR 32 位模式下(28 万亿电子阱深度)运行时,即使对于 1600 K 目标,探测器也不会接近饱和。火灾遥感的一个关键指标是可探测的最小目标尺寸。c-FIRST 可将可探测火灾的最小尺寸提高一个数量级,这主要是由于非饱和探测器的空间分辨率比 GOES 上的高级基线成像仪等当前维修仪器更高,同时功率、尺寸和重量也更低。c-FIRST 空中飞行计划于 2024 年火灾季节进行仪器测试和验证。我们预计 c-FIRST 太空验证将基于 2026 年或之后的空间技术验证机会。
图 2. 铝丝负载(3 根卷在一起的丝,每根直径为 25 μm)在长度为 4 mm 的爆炸下获得的实验结果:a – 负载放电电流信号的波形图、PCD 信号曲线、MCP 扇区的开启时刻(显示为 PCD 信号曲线下方的棍棒);b – 从电流脉冲开始计算,在 I – 90 ns、II – 100 ns、III – 110 ns 时刻开启的 MCP 扇区的空间分辨率光谱记录;c – 光谱强度分布图,从上到下编号并标记为左(L)和右(R),(记录 R 中零级右侧的下降是由于 MCP 扇区之间存在非工作区);d – 相对辐射强度(RRI)在上述三个时刻的最大光谱强度区域中对空间坐标的依赖关系。
5.60 辐射光谱抛光。.............................102 5.61 平场辐射抛光。.............................103 5.62 推扫式辐射抛光。......。。。。。。。。。。。。。。。。。。。。。。。104 5.63 光谱微笑插值 ...............................105 5.64 阴影边框去除工具 .........。。。。。。。。。。。。。。。。。。。。。。。107 5.65 模拟模块菜单。.................................108 5.66 视反射率计算 ..........。。。。。。。。。。。。。。。。。。。。。。109 5.67 从地面参考反射光谱库计算 TOA 辐射度 .111 5.68 根据校准图像光谱验证 TOA 辐射度 ................112 5.69 根据校准图像光谱绘制验证样本 ..。。。。。。。。。。。。。113 5.70 工具菜单。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。114
时间反演性质与量子力学中蕴含的幺正理论相吻合,这一结果揭示了广义相对论与量子力学的不相容性,并导致了“信息悖论”。黑洞信息悖论已被列为本世纪十大物理难题之一,但物理学家们始终坚持信息永远不会丢失。二十多年后,Parikh和Wilczek建议将霍金辐射视为量子隧穿效应,并认为势垒由发射粒子自身的能量决定,因此粒子从黑洞辐射时满足能量守恒。他们用这种方法计算了粒子的修正辐射光谱
在本文中,我们研究了小扭曲角度的TBG的光学传导率和热辐射。我们使用包括200多个平面波的连续模型来实现收敛能带。此方法对很小的角度有效。具有不同扭曲角度的TBG的光导率在数值上由久保公式计算出来。基于先前作品的远场辐射理论[21-23],我们探索了TBG的热辐射特性。TBG的辐射光谱通过改变扭曲角度显示可调的高强度和峰位置。 具有魔法角度,可以调节TBG辐射以在0.05EV至0.08EV范围内集中,这超出了大气透明窗口[24]。 这种电磁(EM)波很难在大气中传播,因此红外(IR)摄像机无法检测到它。 用这种材料制成或覆盖的设备是不可见的。 此类材料也可用于制造纺织品以保持温暖,因为热辐射不太可能通过大气传播。 我们的结果建立了魔法双层石墨烯,作为一个高度可调的平台,可调查隐形和保留温暖的材料。TBG的辐射光谱通过改变扭曲角度显示可调的高强度和峰位置。具有魔法角度,可以调节TBG辐射以在0.05EV至0.08EV范围内集中,这超出了大气透明窗口[24]。这种电磁(EM)波很难在大气中传播,因此红外(IR)摄像机无法检测到它。用这种材料制成或覆盖的设备是不可见的。此类材料也可用于制造纺织品以保持温暖,因为热辐射不太可能通过大气传播。我们的结果建立了魔法双层石墨烯,作为一个高度可调的平台,可调查隐形和保留温暖的材料。
我们研究了 X 射线微断层扫描在实现最佳分辨率、最小化测量不确定性、抑制 3D 图像重建中的伪影形成以及总体优化微断层扫描测量方法方面的局限性。我们探索了通过选择目标材料(钨、钼)控制减速辐射和特征辐射的比率来改变产生的 X 射线辐射光谱组成的可能性、X 射线辐射光谱组成对光束硬化效应的影响以及通过过滤 X 射线管的加速电压来影响 X 射线光谱的可能性。进一步开发和改进了用于测量微米范围内尺寸和使用球形标准测量材料孔隙率的 X 射线微 CT 校准方法。取得的最重要的成果包括为材料研究、工程、矿物学、生物学、考古学和文化遗产保护领域的微 CT 测量和无损检测的新方法提出建议。在材料研究领域,设计并优化了用于对 MgB 2 基超导体进行无损成像的微层析成像方法(由电气工程研究所 SAS 的 Kováč 博士开发),从而能够对各种结构不均匀性进行成像,并无损测量沿预制件拉出的导体的有效超导体横截面积。在成像技术在生物学和古生物学中的应用领域,已经提出了具有优化测量条件的方法,以提高对比度,并开发了用于对图像数据进行数字处理的方法。这可以大大增加结构在其整个体积中的可见性的复杂性,并补充了对结构选定尺寸的定量分析,同时可以实现较低的测量不确定度。
4.73 辐射光谱抛光。.............................118 4.74 平场辐射抛光。.............................118 4.75 推扫式辐射抛光。..............................119 4.76 光谱微笑插值。。。。。。。。。。。。。。。。。。...............121 4.77 阴影边框去除工具 ..........。。。。。。。。。。。。。。。。。。。。。。。122 4.78 模拟模块菜单。.................................123 4.79 表观反射率计算 ...........。。。。。。。。。。。。。。。。。。。。。。124 4.80 从地面参考反射光谱库计算 TOA 辐射度 .125 4.81 根据校准图像光谱验证 TOA 辐射度 ................127 4.82 根据校准图像光谱绘制验证样本 ..。。。。。。。。。。。。。128 4.83 工具菜单。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。129
姓名:Stelios A. Kazadzis 出生日期:1971.04.23 国籍:希腊 状态:已婚,有两个孩子 工作地址:Physicalisch Meteorologisches Observatorium Davos, World Radiation Center, Dorfstrasse 33, CH-7260 Davos Dorf, Switzerland 家庭地址:Melchrutistrasse 37, 8304, Wallisellen, Switzerland 电子邮件:Stelios.kazadzis@pmodwrc.ch 研究员 iD:http://www.researcherid.com/rid/F-8667-2011 简介 Stylianos Kazantzis (SK) 在大气物理学基础和应用研究方面拥有 23 年的经验。 1989年至2000年,他在塞萨洛尼基亚里士多德大学物理系学习物理学(物理学位、环境物理学硕士学位和大气物理学博士学位)。他的博士论文涉及紫外线太阳辐射光谱测量的进展和应用。
该项目旨在通过GCO(全球气候观察系统)要求生成GHG ECV数据产品。GCOS定义ECV GHG如下(请参见Sect。2对于与GCOS要求最新更新有关的评论):“诸如CO 2和CH 4等温室气体的检索,具有足够的质量,以估计区域来源和水槽”。在GHG-CCI+项目卫星衍生的XCO 2(以PPM为单位)和XCH 4(在PPB中)数据产物是从短波Infra-Red(SWIR)光谱区域中的卫星辐射观测中检索的。使用这些仪器,因为它们的测量值对最低的大气层也很敏感,因此提供了有关CO 2和CH 4的区域表面源和水槽的信息。所有产品均使用独立检索算法生成,以将GOSAT-2,OCO-2和Tropomi/S5P辐射光谱转换为2级(L2)XCO 2和/或XCH 4数据产品。