摘要目的:这项研究的主要目的是评估大型现场镉泰特脲(CZT)摄像机在单个photon发射计算机断层扫描(SPECT)图像(SPECT)图像上估计甲状腺摄取(TU)的能力,而与平面相比,与平面校正相比,与平面相比,与平面相比,与平面相比,与平面相比,与平面相比,与平面相比,与平面相比,与平面相比,这是一系列23个对定对不到的。次要目标是确定示踪剂给药的辐射剂量和其他计算机断层扫描(CT)扫描。方法:使用甲状腺幻影,用于平面,Tomo-AC和Tomo-NoAC图像确定跨校准因子。然后,在5个拟人化幻像上进行以甲状腺为中心的平面和SPECT/CT,活性在0.4至10 MBQ上进行,在服用79.2±3.7 MBQ后[99m TC] TC] - 特雷切酸酯的23例患者。我们估计拟人化幻象的绝对甲状腺活性(ATHA)和患者的TU。辐射剂量还使用国际放射学保护委员会(ICRP)报告和VirtualDose TM CT软件确定。结果:对于Planar,Tomo-AC和Tomo-NoAC图像,跨校准因子分别为66.2±4.9、60.7±0.7和26.5±0.3计数/(MBQ S)。对平面,Tomo-AC和Tomo-NoAC图像的理论和估计的ATHA在统计上高度相关(r <0.99; p <10 –4),理论ATHA和估计的ATHA之间的相对百分比差异为(8.6±17.8)(8.6±17.8),(8.6±17.8),(-1.3±5.2)和(-1.3±5.2)和(12.8±5.7±5.7)%,相应相差。有效和您的ROID吸收剂量分别为(0.34 ct + 0.95 nm)MSV和(3.88 ct + 1.74 nm)MGY。基于不同图像对(平面与Tomo-Ac,Planar vs Tomo-Noac和Tomo-Ac vs Tomo-Noac)之间的TU进行比较显示出统计学上很重要的相关性(r = 0.972、0.961和0.961和0.935; p <10 –3)。结论:在新一代CZT大型摄像机上使用平面和SPECT/CT获取的ATAS估计是可行的。此外,在Spect/ct
辐射风险•为了安全地执行,您的程序需要在X射线指导下插入该行。X射线是一种电离辐射。研究表明,暴露于高剂量的电离辐射的人在暴露几年或几十年后会增加患癌症的机会。但是,尽管更复杂或更困难的病例可能需要更高的辐射剂量,但与此过程相关的辐射暴露量很小。•是对您的医生和放射医生的评估,将执行该程序的好处大于暴露于辐射的风险。专业的放射科医生和放射线照相师将确保在手术过程中保持辐射暴露尽可能低。•我对在此过程中接触辐射的风险有任何疑问,您可以在同意过程中与将执行您的程序执行的放射科医生进行进一步讨论。•如果您认为自己可能怀孕,请通知临床团队。
摘要:本评论旨在探索未来靶向放射性核素治疗(TRT)策略的潜在目标/伴侣,尽管癌细胞经常接受高平均肿瘤辐射剂量,但癌细胞经常没有被有效地杀死。在这里,我们将讨论癌症基因组中的关键因素,尤其是与DNA损伤反应/修复和维持系统有关的癌症细胞死亡的关键因素。要克服由于辐射/耐药细胞和肿瘤异质性而引起的TRT效力的当前局限性,并使TRT更有效,我们建议有希望的策略是针对对癌症生存至关重要的DNA维持因子。考虑其特异性DNA损伤响应/修复能力和转录/表观遗传系统失调,PARP,ATM/ATR,扩增/过表达转录因子等关键因素以及DNA甲基转移酶具有潜在的螺旋电子治疗的分子靶标;此外,它们对非放射性分子的抑制作用可能是增强TRT治疗反应的合作成分。
为了将空间分辨率极限推向纳米级,基于同步加速器的软 X 射线显微镜 (XRM) 实验需要向材料施加更高的辐射剂量。然而,相关的辐射损伤会影响精细生物样品的完整性。本文报道了软 X 射线辐射损伤在安装在 Si 3 N 4 膜上的常见薄冻干脑组织样本中的程度,如傅里叶变换红外显微镜 (FTIR) 所示。研究发现,冻干组织样本受到振动结构普遍退化的影响,尽管这些影响比文献中报道的石蜡包埋和水合系统中观察到的影响要弱。此外,在常规软 X 射线曝光中,首次可以识别出组织-Si 3 N 4 相互作用的弱、可逆和特定特征,进一步突出了生物样本、其制备方案和 X 射线探针之间的复杂相互作用。
部门作为这种方法是众所周知和验证的。在首次审核运动(2011- 2016年)之后,出现了比利时对Quatro改编的需求。修改了Quatro文件,以考虑临床和技术进步,国家特殊性,并避免在被证明是统一定性的审计部件中裁员。对辐射剂量和其他相关医学物理学程序的审核也已从Quatro中删除,因为癌症计划的贝尔达特部分涵盖了这一方面[9,10]。在Quatro中未充分发展的质量和安全管理方面得到了扩展[11]。这些变化在2017年导致了“ B Quatro”文档的创建,该文件已用于进行2017年至2023年的第二个审计周期[12]。在第二个审核周期之后,有必要再次审查BQUATRO手册和清单,以集成自第一个Bquatro发表以来的进一步临床和技术升级。因此,此修订已引起了第二版的Bquatro。
几十年来,快速、高质量的放射图像采集一直是一项重大挑战,而且仍然是一项巨大的挑战。如何加快 MRI 和 CT 扫描等图像数据采集速度一直是人们关注的焦点,以提高效率和患者安全等。为此,已开发并报告了许多用于快速、高质量放射图像重建的 AI 技术(2),在某些情况下,静脉造影剂的剂量大大减少,辐射剂量也更低。可以预见,这些新的图像数据采集技术将继续得到开发,以造福患者、放射科医生和放射临床流程。此外,人工智能可以在整合和优化放射数据采集工作流程中发挥重要作用,例如,最近一个成功的例子是 COVID-19 大流行期间的非接触式患者定位系统 ( 3 ),该系统自动校准、定位和多视图合成组件,无需身体接近即可对患者进行扫描。本期刊的放射学人工智能专业将鼓励和欢迎解决人工智能赋能的图像数据采集各个方面的投稿。
仅限第 1 部分的次要结果测量:1. 为确定 123I-ATT001 的生物分布和药代动力学,将从第 1 部分的前 6 名患者采集血液和尿液样本。血液样本将在每次服药后 1 小时、4 小时和 24 小时采集,也可选择在首次服药后 48 小时采集。尿液样本仅在首次服药后 24 小时采集。2. 为确定 123I-ATT001 的辐射剂量(每个器官暴露于辐射):2.1. 全身和大脑 SPECT/CT 成像将在每次服药后 1 小时进行 2.2. 每次服药后 4 小时进行全身和大脑 SPECT 2.3. 仅大脑 SPECT 将在注射首次剂量后 24 小时进行 2.4. 可选择在注射首次剂量后 48 小时拍摄大脑 SPECT 图像 2.5.注射第四剂后 4 小时 ±30 分钟将进行仅脑部 SPECT 检查
如今,没有一种疗法可以治疗所有类型的癌症。放射治疗是医生工具箱中的一种治疗选择:它通过将癌细胞暴露在高剂量的辐射下来破坏癌细胞,并且通常采用与 CERN 和其他实验室的粒子加速技术相同的技术。在许多医院中,常规放射治疗是使用房间大小的粒子加速器进行的,粒子加速器使用 X 射线束瞄准肿瘤。除了 X 射线之外,其他粒子也具有有趣的特性,可以更好地治疗某些类型的肿瘤或减少有害副作用:这些粒子包括质子、电子和碳或氦等离子。新的放射治疗方式也正在探索中:例如,FLASH 照射,即在极短的时间内释放超高辐射剂量,似乎可以大大减少对健康组织的损害。这些创新治疗方法的广泛采用通常受到所需仪器的成本和复杂性的限制,而 CERN 在开发先进加速器和磁体技术方面的专业知识可以发挥作用。
摘要 - 诊断参考水平(DRL)嵌入到优化程序中,以调节CT剂量和诊断质量。这项研究的目的是在尼日利亚索科托州先进的医疗诊断中心建立当地的DRL和辐射剂量暴露。为此研究并评估了190例患有CT头,胸部和腹部 - 斜杆扫描的患者。已经确定,CTDI卷的DRL的头部,胸腔和腹部 - 腹部分别为48.2、9.44和8.02,MGY.CM中的DLP DRL分别为1044、372和646。在比较头部CT时,我们的CTDI Vol DRL低于许多国际标准,但我们的DLP DRL也低于其他国家。Sokoto状态的胸部CT DRL与某些国家的DLP标准相当,尽管其CTDI VOL较高。腹部 - 纤维CTDI Vol DRL低于英国和我们的腹部,因此需要实施受控和优化的协议,以确保患者安全性的同时保持图像质量。
与物质的X射线相互作用是医学成像成功,影响图像质量,诊断准确性和患者安全的基础。这项研究批判性地探讨了主要的相互作用机制 - 光电吸收,康普顿散射和相干散射,以及它们在各种医学成像方式中的影响。通过分析其对图像分辨率,对比度和辐射剂量的影响,该研究突出了每种相互作用机制的优势和局限性。这些发现强调了光电吸收在高对比度成像中的作用,康普顿散射在减少噪声中带来的挑战以及相干散射的最小临床意义。重点是优化成像参数,并采用高级技术,例如双能CT和AI增强成像,以平衡诊断功效与辐射安全性。此探索为X射线物理和医学成像的相互作用提供了宝贵的见解,为增强诊断实践和未来创新铺平了道路。