摘要 :信息辐射器 (IR) 在半公共场所提供特定于上下文的信息,一群人可以在工作或路过时看到这些信息。它们可以简化“开箱即用”的信息共享,培养意识和社会化,创造偶然性并增强协作。近期社会技术发展,例如永久混合工作环境的建立,以及人机交互 (HCI) 领域的进步,例如增强现实 (AR) 和虚拟现实 (VR) 的出现,可能会影响 IR 的使用方式,甚至挑战其实用性。在本文中,我们将讨论这些发展及其对未来几十年在知识工作背景下设计和使用 IR 的可能影响。我们认为 IR 可能仍将是未来办公环境的重要组成部分,提供意识、支持偶然性并为配对和非正式交流构建一个情境化的社交场所。使用新的显示和交互技术(例如 AR),它们甚至可能通过实现流畅的工作场景而变得更加重要。
SPEAR 提供便携式、紧凑且可部署的高功率电磁 (HPEM) 源,作为针对单个和群体无人机威胁的定向能武器。该创新系统设计为有意、单脉冲重复率、高功率电磁辐射器。由于其便携尺寸、重量轻、功率要求低和有效性,SPEAR 为地面车辆、固定平台和野战部队提供反小型无人机系统 (C-sUAS) 能力。
概念 当太空系统达到站点高度后,轻型 AESA 面板将展开以创建所需的辐射孔径尺寸。阵列辐射器的馈电机制是基于有源硅锗 (SiGe) 的塑料封装发射和接收模块网络。该阵列利用林肯实验室的专利减重技术,用于堆叠微带贴片天线阵列,大大减轻了典型阵列的重量,而不会对 RF 性能产生负面影响。
摘要。该研究的目的是确定添加与EG(乙二醇)结合的墨氧化物(GO)流体或水可能会增加汽车辐射器中热的转移。散热器是汽车冷却系统的重要部分;他们消散发动机产生的额外热量。常规冷却剂转运温度的容量受到限制,包括乙二醇和水。使用纳米颗粒流体可以提高传导热量的能力,纳米颗粒流体基本上是碱基中颗粒的溶液。该技术使用乙二醇和水来通过分散GO颗粒来形成纳米颗粒流体。使用实验,描述了纳米颗粒流体的弹性或热特征。接下来,使用早期版本的辐射器布置,进行了许多传热测试。与传统冷却剂相比,在利用GO纳米颗粒流体的同时,已经评估了散热器在各种功能情况下散发热量的能力。将散热器的传热效率与普通的乙二醇进行比较(或最初的结果表明与GO纳米颗粒液的添加可改善它。增加了纳米颗粒流体组合中的热导率,从而导致更有效的热量耗散。为了确保在汽车冷却机制上有效利用纳米颗粒流体,在长期暴露于升高温度时,可以进一步评估它的耐用性。本研究的持续尝试为汽车应用提供了最先进的冷却系统。结果表明,与常规冷却剂结合使用GO纳米颗粒流体有机会提高汽车散热器的热传递或一般效率。
Bhopal,M.P。,印度摘要该研究论文深入研究了计算流体动力学(CFD)分析领域,以通过应用涂料的应用来优化汽车辐射器的热性能。该研究的重点是三种不同涂层大小的影响,即50微米,80微米和100微米,旨在提高传热效率和整体散热器性能。为了系统地研究这些涂层对热行为的影响,L9正交阵列被用作强大的实验设计。实验方法涉及使用CFD技术模拟散热器的热量耗散能力,考虑到涂层散热器中流体动力学和传热的相互作用。L9正交阵列为进行实验提供了系统,有效的方法,从而可以探索各种涂层组合及其对热性能的影响。研究不仅分析了不同涂层大小对整体传热效率的影响,而且还试图鉴定最佳组合,从而产生较高的结果。从这项研究中获得的见解有助于发展汽车工程中先进的热管理策略,旨在提高散热器的冷却效率,同时保持操作和材料限制。 关键发现突出了涂层厚度在增强汽车散热器的散热能力中发挥作用的重要作用。 关键字:汽车,散热器,CFD,正交数组,涂层1。从这项研究中获得的见解有助于发展汽车工程中先进的热管理策略,旨在提高散热器的冷却效率,同时保持操作和材料限制。关键发现突出了涂层厚度在增强汽车散热器的散热能力中发挥作用的重要作用。关键字:汽车,散热器,CFD,正交数组,涂层1。这项研究对汽车行业的影响,指导未来的设计注意事项,以提高散热器性能,从而在传热效率,能源消耗和整体系统可持续性方面提高散热器性能。引言汽车辐射器在维持内燃机的最佳工作温度方面起着关键作用,从而确保了有效的性能和寿命。随着对发动机功率和燃油效率提高的需求不断提高,对先进的热管理策略的需求变得至关重要。这项研究的重点是利用计算流体动力学(CFD)分析,以通过涂层的战略应用来增强汽车辐射器的热性能。
建立D Max,ACC大于辐照器操作员要求的价值,应尽可能增加辐照器内的处理功能和效率。这可能会通过提高程序规范的过程能力来促进更快的产品转盘,并有时由于提高效率而导致辐照服务的定价较低。此外,在过程缺陷的情况下,ACC具有更大的D最大规范,可以提高辐射器重新加工或增强产品剂量的能力。如果过量服用过量,则仍然可以释放该产品。在某些情况下,测试多个剂量水平以更彻底地了解产品和电离辐射后的包装功能可能是有益的。
航天器热管理对于确保任务成功至关重要,因为它影响了板载系统的性能和寿命。提供了航天器热控制解决方案中最新技术的全面概述,以及用于高效有效热管理的设计方法框架。讨论了各种热控制溶液,包括涂料,绝缘,热管,相位变化材料,导电材料,热装置,积极泵送的流体环和辐射器,以及空间中的热量加载的主要来源。强调了对热环境的认证建模和分析,以确定适当的热控制解决方案和设计途径。未来的热管理创新(例如新材料和技术)有可能进一步提高航天器热控制解决方案的效率和有效性。
碳纤维(CF)增强聚合物复合材料已用于航空航天结构,因为与铝合金相比,它们具有低质量,高特异性,高特异性刚度和低生命周期维护。但是,由于其相对较低的导热率,原始的CF聚合物复合材料无法为某些应用(例如热交换系统和散热器)提供有效的热流。本文所描述的技术提供了新型的CF聚合物复合材料,通过掺入热解石墨板(PGS),具有很高的导热率。新型混合PGS/CF聚合物复合材料的热导率的测量比原始CF聚合物复合材料高约13至36倍,并且是铝合金6061的两倍。这种具有足够热导率的新材料适用于热交换系统的复合辐射器。