与过去的技术节点相比,器件的缩小可能会导致常规(未硬化)六晶体管 (6T) SRAM 单元的 SEU 敏感度增加 [8]。尽管 SEU 是一种非破坏性事件,但 SEU 概率的增加可能会对更大规模 SRAM 器件的使用造成越来越大的问题。这在使用高性能数字信号处理器的商用现货产品、太空任务和核电反应堆中尤其如此。由于多个位翻转可能导致同一个字中出现多个错误,因此这是一个更大的问题 [9]。在本文提出的设计中,标准 SRAM 单元经过辐射硬化处理,以减轻 SEU 和 DEU。TICE 存储单元可以自我纠正最多两个同时发生的翻转。为了进一步提高整体可靠性,我们应用布局技术将关键节点尽可能地放置在 TICE 存储单元中。在假设三个同时发生的翻转很少见的情况下,这降低了关键节点同时被击中的可能性。与标准 8T 存储单元和 DICE 存储单元相比,本研究提出的存储单元具有更高的耐辐射性。
混合壁cl/br钙钛矿提供了在蓝色区域中发射最便利的方法。然而,由于这些系统通常遭受严重的诱捕非辐射性损失,因此薄膜的光发光量子产率(PLQY)相对较低(<40%),这是其最终的LED效率。[19-23]此外,由于钙钛矿材料的离子性质,在外部刺激(电场,光辐射和热加热)下,通常在混合卤化物钙钛矿中观察到卤化物离子的迁移,从而导致偏移发射光谱和材料分解。[14,15,24]此外,卤离子离子的迁移可以实现相位分离,这增加了高性能和操作稳定的混合甲基甲虫LED的另一个障碍。[25–30]考虑到这一点,已经用混合壁蓝的钙钛矿LED进行了分解。Zhong和同事成功地制定了一种双重配体策略,以精确控制有效的蓝色混合甲基钙钛矿LED的尺寸,在473 nm的发射波长下,EQE为8.8%。[31]高
亲爱的编辑,铁电隧道FET(FETFET)是关于新型低功率电子设备的越来越重要的研究主题[1,2],因为铁电气材料的负电容效应有助于提高潜在的通道并增加TFET中的状态电流。铁电疗法显示辐射性能对辐射的辐射硬性能,这对于基于这种苛刻环境中使用的这种材料的设备很有帮助[3,4]。单事件传播(集合)效应是由空间或陆地辐射环境中的高能量颗粒引起的,这可能会导致软错误的可能性,甚至可能导致航天器中的灾难性事故[5,6]。对重离子打击下FETFET的辐射效应的搜索对于评估这些设备在太空环境中的潜在误差非常重要。为了提高设备的性能,我们提出了一种新的硅在绝缘子双门栅极FETFET(SOI DG-FETFET)中,并使用Si:HFO 2铁电栅极介电。使用Synopsys Sentaurus Tech-Nology Computer Adided Design(TCAD)Simulator [7]研究了SOI DG-FETFET中的单事件传播效应[7]。设备结构和仿真设置。
有机太阳能电池受益于非富勒烯受体(NFA),这是由于其高吸收系数,可调的边界能量水平和光学间隙及其相对较高的发光量子量相比,与富勒烯相比。这些优点导致在供体/NFA异质结处的低或可忽略不计的电荷产量高产量,而单个连接设备的官能功率超过19%。以超过20%的高度推动此值需要增加开路电压,目前仍远低于热力学极限。这只能通过减少非辐射重组,从而增加光活动层的电致发光量子效率。在这里,总结了对非辐射衰减的起源以及相关电压损耗的准确定量的理解。强调了抑制这些损失的有希望的策略,重点是新的材料设计,供体 - 受体组合的优化和混合形态。本评论旨在指导研究人员寻求未来的太阳能收获供体 - 受体混合物,该供体的混合物结合了较高的激子分离产量和高辐射性的免费载体重组和低电压损耗的高收益,从而缩小了与内部有机和perovskite photovskite PhotoverSkite Photovalsics的效果差异。
有效的光伏设备必须是有效的光发射器,才能达到热力学效率极限。在这里,我们通过利用光子回收的显着益处来展示钙钛矿光伏作为明亮的发射器的前景,这实际上可以通过杀戮的界面淬灭来实现。我们通过设计具有长(〜3 nm)有机垫片的多量子井结构的辐射和稳定的钙钛矿光伏设备,并在钙钛矿顶部接口处具有烯烃分子。我们的L位点交换过程(L:屏障分子阳离子)可以形成稳定的界面结构,尽管屏障较厚,但仍具有中等构造的性能。与流行的短(约1 nm)LS相比,我们的方法通过光子回收的递归过程提高了辐射效率。这导致了具有高光伏效率的辐射性光伏的实现(LAB 26.0%,证明为25.2%)和电致发光量子效率(峰值为19.7%)(峰值为19.7%,17.8%,在1-拟合等效量)。此外,基于烯铵的量子井的稳定晶体能够使我们的设备具有高效的高效性,以超过1000 h的运行和> 2年的存储空间。
沿海湿地减轻与增强的温室气体(GHG)排放相关的CLI伴侣变化的能力是两种服务的总和:(i)有机碳的积累(续集,股票的增益),以及(ii)重新涂抹GHG GHG排放的能力,尤其是具有更高的辐射电位的形式,例如具有较高的辐射性甲烷(例如甲烷)(例如甲烷)4。某些沿海湿地类型(例如盐沼)可以从植被中隔离碳,除了沉积外,除了在其盐水中的快速生长和降低的脱氧量位置速率,除了将大量有机碳储存在土壤中,并且由于环境的盐水和无水的状态15。此外,健康沿海湿地土壤的盐分条件具有可能仅发射的其他温室气体5(例如甲烷)(CH 4)的优势,这比CO 2更有效。他们在沿海地区的地位和泛滥的政权改变了土壤水状态,排水和氧气的可用性,推动碳在湿地中的积累。他们还有利于从相邻生态系统的洪水水中捕获的有机颗粒,这些洪水以富含有机富含有机的储层的形式增加了土壤有机碳,通常将其重新化为蓝色碳汇体3。
摘要候选PEVATRON MGRO J1908 + 06,显示了超过100 tev的硬光谱,是银河平面中最特殊的射线源之一。其复杂的形态和一些可能与非常高的能量(VHE)发射区域相关的可能对应物,无法区分-Ray发射的辐射性和缓慢性。在本文中,我们说明了MGRO J1908 + 06的新的多波长分析,目的是阐明其性质及其超高能量发射的起源。我们对12个CO和13 CO分子线发射进行了分析,证明存在与源区域空间相关的密集分子云的存在。我们还分析了10 GEV和1 tev nding具有硬光谱的对应物之间的12年fermi -large区域望远镜(LAT)数据(1.6)。我们对XMM – Newton数据的重新分析使我们能够对此来源对X射线UX进行更严格的约束。我们证明,一个加速器无法解释整个多波长度数据集,无论它是加速质子还是电子,但是需要一个两区模型来解释MGRO J1908 + 06。VHE发射似乎很可能是由PSR J1907 + 0602在南部地区提供的TEV脉冲星风星云,以及北部地区的Supernova Remnant G40.5 0.5与分子云之间的相互作用。
摘要:当前地缘政治形势和国内电子行业面临的进口替代挑战要求制造能够在极端环境条件下,尤其是高温条件下可靠运行的设备。在开发必须在超出通常值的温度范围内可靠运行的电子设备时,开发人员应依靠主动或被动冷却。在某些情况下,冷却是不切实际或不可能的。在某些情况下,如果设备在特殊温度范围内运行可以降低设备成本或提高其可靠性,那么它就非常有意义。在这种情况下,需要解决许多复杂的问题,包括半导体制造技术、设计和测试方法。本文探讨了制造国内石油天然气和航空航天工业长期发展所必需的高温电子元件的问题。智能井的进口替代技术的创造可以大大降低设备成本。在航空航天工业中,这个问题更加现实:用于太空的“西方”计算设备的成本高达 50 万欧元,在制裁条件下,可能无法购买,而类似的进口替代国产设备则便宜 10 倍。飞往近太空和远太空的飞行除了需要高抗辐射性外,还需要所有航天器系统在宽温度范围内的可靠性。本文介绍了设计在高达 +125°C 的温度下运行的主要模拟芯片的技术特性。
摘要 本文介绍了对 CVD 钻石进行的研究,以确定带电粒子的痕迹(CVD 是化学气相沉积的缩写)。辐射硬度是探测器的先决条件,探测器应在 CERN 大型强子对撞机的 ATLAS 和 CMS 实验的相互作用区域附近工作。基于金刚石的探测器可能是该领域像素探测器和条形探测器的抗辐射选择。这项工作包含四个主要成果。首先,将某厂商钻石样品的探测器质量从30μm电荷采集距离提高到200μm。其次,首次运行基于金刚石的微带探测器:金刚石带探测器在信号分布峰值处实现了 50:1 的信噪比,最可能的电荷信号为 5000 e 。轨迹预测的误差在 12 μm 和 16 μm 之间,对于低于 1000 e 的信号阈值,探测器效率通常接近 100%。第三个结果是 CVD 钻石的不均匀性扩大了信号分布。这并不奇怪,因为 CVD 钻石是多晶的。第四个要点是 CVD 钻石的辐照,这是首次使用质子、中子和介子进行辐照,其剂量部分高于大型强子对撞机的预期剂量。这里检查的钻石样品具有抗辐射性,具体取决于颗粒类型和剂量。我作为 CERN ATLAS/SCT 小组的成员在探测器研究项目 RD42 中开展了这项工作。
开发了用于激发和记录厚度 h S 300 ÷ 500∙10 3 纳米和直径 D 60 ÷ 100∙10 – 3 米的 SiO 2 /Si 圆盘状晶片中的阻尼弯曲共振的方法、设计和制造了用于测量结构敏感内耗 (IF) Q – 1 的装置。开发了用于无损检测圆盘状半导体基板中结构缺陷积分密度 nd 和破损层深度 h bl 的技术。通过测量谐波频率 f 0 、f 2 下的 IF 背景 Q – 1 0,可以通过实验确定振动圆盘的节点线。这样就可以对寻找这些节点线的理论计算进行修正,同时考虑到圆盘的线性尺寸及其连接方法。研究了 X 射线和电子辐照 SiO 2 /Si 盘状晶片板后的温度中频谱 Q – 1 ( Т )。结果发现,在测量过程中,Si 结构缺陷的退火会改变温度中频谱 Q – 1 ( Т ) 的形状。在以速度 V Δ T/ Δ t ≤ 0.1 K/с 加热 SiO 2 /Si 晶片板时,可以观察到由点缺陷形成的中频峰 Q – 1 M 。这使得能够确定辐射缺陷各向异性复合体重新取向的活化能 H 。通过建立中频背景参数 Q – 1 0 的稳定性,可以确定半导体晶片板及其基于的器件的抗辐射性。所提出的方法可用作控制微电子用半导体晶片板晶体结构缺陷的无损方法。