摘要。的结构特性,例如用γ射线照射的材料的机械和电性能受到位移损伤的影响。具有不同行为的连续过程最终导致材料内“缺陷”集的形成,例如,它可能导致物质变得脆弱。在这项研究中,蒙特卡洛代码使用基于代码的原子原子或PKA的基于代码的模拟方法提供信息,从而造成损坏。也,计算了由钴60源对铁结构特性的伽马辐射造成的损伤速率。要访问PKA信息,已经开发了一个名为Gammatrack的程序。此软件提供有关被拒绝的原子属性和相互作用运动学的信息。理论计算方法也已用于确认蒙特卡洛方法的结果。使用生成的二级电子,物质(SRIM)代码的停止和离子范围可以计算伽马辐射造成的损害。PKA数据是通过Gammatrack程序提取的,可以用作SRIM代码的输入,以进行系统分析伽马损伤。获得的铁的PKA光谱与以前的作品一致。可以意识到只生产单元,并且在钴60辐射下,原子 - 原子碰撞的可能性可以忽略不计。因此,将排除创建PKA级联反应。此外,在〜10 - 7,10 - 8(每个原子位移(DPA) /年)的理论和蒙特卡洛法(MCNPX + SRIM代码)计算时,计算铁靶的损伤率。
宽带隙半导体 SiC 和 GaN 已商业化用于电力电子和可见光至紫外发光二极管(例如 GaN/InGaN/AlGaN 材料系统)。对于电力电子应用,SiC MOSFET(金属 - 氧化物 - 半导体场效应晶体管)和整流器以及 GaN/AlGaN HEMT 和垂直整流器在高功率水平下提供比 Si 器件更高效的切换,现在正用于电动汽车及其充电基础设施。这些器件还可应用于涉及高温和极端环境的电动飞机和太空任务。在本综述中,将它们的固有辐射硬度(定义为对总剂量的耐受性)与 Si 器件进行了比较。宽带隙半导体的固有辐射硬度更高,部分原因是它们产生缺陷的阈值能量(原子键强度)更大,更重要的是因为它们的缺陷复合率高。然而,现在人们越来越认识到,SiC 和 GaN 功率器件中重离子引起的灾难性单粒子烧毁通常发生在电压约为额定值的 50% 时。在高线性能量传输速率和高施加偏压下,离子诱导泄漏发生在外延区域内的临界功率耗散之上。沿离子轨道耗散的功率量决定了漏电流衰减的程度。最终结果是沿离子轨道产生的载流子发生碰撞电离和热失控。发光器件不受这种机制的影响,因为它们是正向偏置的。应变最近也被确定为影响宽带隙器件辐射敏感性的一个参数。
宽带隙半导体 SiC 和 GaN 已经作为功率器件商业化,用于汽车、无线和工业电源市场,但它们在太空和航空电子应用中的应用受到重离子暴露后易发生永久性性能退化和灾难性故障的阻碍。这些宽带隙功率器件的太空认证工作表明,它们易受无法屏蔽的高能重离子空间辐射环境(银河宇宙射线)的损坏。在太空模拟条件下,GaN 和 SiC 晶体管在其额定电压的约 50% 下表现出故障敏感性。同样,在重离子单粒子效应测试条件下,SiC 晶体管容易受到辐射损伤引起的性能退化或故障,从而降低了它们在太空银河宇宙射线环境中的实用性。在 SiC 基肖特基二极管中,在额定工作电压的 ∼ 40% 时观察到灾难性的单粒子烧毁 (SEB) 和其他单粒子效应 (SEE),并且在额定工作电压的 ∼ 20% 时漏电流出现不可接受的下降。超宽带隙半导体 Ga 2 O 3 、金刚石和 BN 也因其在电力电子和日盲紫外探测器中的高功率和高工作温度能力而受到探索。从平均键强度来看,Ga 2 O 3 似乎比 GaN 和 SiC 更能抵抗位移损伤。金刚石是一种高度抗辐射的材料,被认为是辐射探测的理想材料,特别是在高能物理应用中。金刚石对辐射暴露的响应在很大程度上取决于生长的性质(自然生长与化学气相沉积),但总体而言,金刚石对高达几 MGy 的光子和电子、高达 10 15(中子和高能质子)cm − 2 和 > 10 15 介子cm − 2 的辐射具有抗辐射能力。BN 对高质子和中子剂量也具有抗辐射能力,但由于中子诱导损伤,h-BN 会从 sp 2 杂化转变为 sp 3 杂化,并形成 c-BN。宽带隙和超宽带隙半导体对辐射的响应,尤其是单粒子效应,还需要更多的基础研究。© 2021 电化学学会(“ ECS ” )。由 IOP Publishing Limited 代表 ECS 出版。[DOI:10.1149/2162-8777/ abfc23 ]
使用X射线光电光谱(XPS)在银色和铜表面上的自组装1多二烷硫醇单层(SAM)使用同步辐射和常规MG K激发表征。辐照诱导的Cu和Ag上硫醇酸盐SAM的变化。已经完成了硫种类的识别。结果获得了对银的N-烷硫醇的早期研究。在铜(C 12 s/cu)上,观察到的S 2P频谱非常广泛,但是使用不同的激发能的使用使我们能够识别表面上的四个硫种。在162.6 eV处观察到硫酸铜的S 2P 3/2成分。在辐照过程中已经观察到了另外三个双重(161.9 eV,163.2 eV和163.8 eV),并将它们分配给铜上的化学吸附硫,不同的二二甲基硫纤维和硫 - 硫键。©2004 Elsevier B.V.保留所有权利。