1。Buse JB,Davies MJ,Frier BM,Philis-Tsimikas A.100年:发现胰岛素对临床结果的影响。BMJ开放糖尿病护理。2021; 9:e002373。doi:10.1136/ bmjdrc-2021-002373 2。 div>Elsayed Na,Aleppo G,Aroda VR等。9。血糖治疗的药理方法:糖尿病中的护理标准-2023。糖尿病护理。2022; 46:S140–57。doi:10.2337/ dc23-S009 3。 div>Peyrot M,Barnett AH,Meneghini LF,Schumm-Draeger PM。胰岛素治疗研究中跨国全球态度的胰岛素依从性行为和障碍。糖尿病药物。2012; 29:682–89。 doi:10.1111/j.1464- 5491.2012.03605.x 4。 Weeda ER,Muraoka AK,Brock MD,Cannon JM。 药物对2型糖尿病患者每天服用一次可注射的胰高血糖素样肽-1(GLP-1)受体激动剂每天服用一次:荟萃分析。 int J Clin实践。 2021; 75:1-6。 doi:10.1111/ijcp.14060 5。 Polonsky WH,Fisher L,Hessler D等。 患者对每周一次的糖尿病药物的观点。 糖尿病OBES METAB。 2011; 13:144–9。 doi:10.1111/j.1463-1326.2010.01327.x 6。 Nishimura E,Pridal L,Glendorf T等。 胰岛素ICODEC的分子和药理表征:一种新的基础胰岛素模拟,专为每周一次的剂量设计。 BMJ2012; 29:682–89。doi:10.1111/j.1464- 5491.2012.03605.x 4。Weeda ER,Muraoka AK,Brock MD,Cannon JM。药物对2型糖尿病患者每天服用一次可注射的胰高血糖素样肽-1(GLP-1)受体激动剂每天服用一次:荟萃分析。int J Clin实践。2021; 75:1-6。doi:10.1111/ijcp.14060 5。Polonsky WH,Fisher L,Hessler D等。患者对每周一次的糖尿病药物的观点。糖尿病OBES METAB。 2011; 13:144–9。 doi:10.1111/j.1463-1326.2010.01327.x 6。 Nishimura E,Pridal L,Glendorf T等。 胰岛素ICODEC的分子和药理表征:一种新的基础胰岛素模拟,专为每周一次的剂量设计。 BMJ糖尿病OBES METAB。2011; 13:144–9。 doi:10.1111/j.1463-1326.2010.01327.x 6。 Nishimura E,Pridal L,Glendorf T等。 胰岛素ICODEC的分子和药理表征:一种新的基础胰岛素模拟,专为每周一次的剂量设计。 BMJ2011; 13:144–9。doi:10.1111/j.1463-1326.2010.01327.x 6。Nishimura E,Pridal L,Glendorf T等。 胰岛素ICODEC的分子和药理表征:一种新的基础胰岛素模拟,专为每周一次的剂量设计。 BMJNishimura E,Pridal L,Glendorf T等。胰岛素ICODEC的分子和药理表征:一种新的基础胰岛素模拟,专为每周一次的剂量设计。BMJ
图S3。用于检测HPNPO的抗体似乎无法识别果蝇PNPO。(a)普遍存在的SGLL敲低(基因型:actin -gal4/uas -SGLL RNAI)和对照曲线(基因型:actin -gal4/+和uas -sgll rnai/+)中的SGLL mRNA水平。n =每个基因型4。误差线代表平均值±SEM。* P <0.05。单向方差分析与Tukey的邮政为HOC。(b)具有各种基因型的成人头部匀浆的蛋白质印迹。n =每个基因型2。微管蛋白是负载对照。从所有三种基因型中检测到一种结合。这个乐队的大小似乎是正确的;果蝇PNPO的预测分子量(约27 kDa)。然而,SGLL敲低频率中的带强度与两个对照中的带强度相同,表明该频带不太可能是果蝇PNPO。
1. 加利福尼亚大学化学系,加利福尼亚州伯克利 94720,美国 2. 劳伦斯伯克利国家实验室化学科学部,加利福尼亚州伯克利 94720,美国 3. 马克斯普朗克学会弗里茨哈伯研究所,柏林 14195,德国 4. 加利福尼亚大学圣地亚哥分校纳米工程和化学工程系 ATLAS 材料科学实验室,加利福尼亚州拉霍亚 92023,美国 5. 内华达大学内华达极端条件实验室,内华达州拉斯维加斯 89154,美国 6. 弗里德里希席勒大学光学与量子电子研究所,阿贝光子学中心,耶拿 07743,德国 7. 耶拿亥姆霍兹研究所,耶拿 07743,德国 8. Elettra-Sincrotrone Trieste SCpA,Strada Statale 14,的里雅斯特 34149,意大利9. 劳伦斯伯克利国家实验室人工光合作用联合中心,美国加利福尼亚州伯克利 94720 10. 德克萨斯大学里奥格兰德河谷分校化学系,美国德克萨斯州爱丁堡 78539 11. 加州大学圣地亚哥分校材料科学与工程系,美国加利福尼亚州拉霍亚 92023 12. 加州大学圣地亚哥分校可持续电力与能源中心,美国加利福尼亚州拉霍亚 92023 13. 劳伦斯伯克利国家实验室材料科学部,美国加利福尼亚州伯克利 94720
考虑到所有情况下,从业人员必须做出有关任何特定程序或行动方案的适当判断。因此,与本文档中的指导不同的方法独自站立,并不一定意味着该方法低于护理标准。相反,认真的从业人员可以负责任地采取与本文档中规定的行动方案,而在从业人员的合理判断中,这种行动方案由患者状况,可用资源的局限性或本文档出版后知识或技术的局限性等变量表示。但是,采用与本文档指南大不相同的方法的从业者可以考虑在患者记录信息中记录足以解释所采用的方法。
摘要在这项研究中,测得的气象数据,经验模型用于估计尼日利亚奥韦利的全球太阳辐射。使用Angstrom和Page的线性回归模型,尼日利亚OWERRI的相对阳光持续时间,相对湿度和最高温度与全局太阳辐射数据相关。产生了其他多个线性回归模型,以检查全球接收到的太阳能与其他气候因素(例如最高温度和相对湿度)之间的关系。阿布贾的尼日利亚气候机构(NIMET)为2011年至2021年之间的11年期间提供了气候特征。四个统计误差指标 - 均值偏差误差(MBE),均方根误差(RMSE),平均百分比误差(MPE)和T-Stat-用于验证数据的统计有效性。尽管某些模型比其他模型更加强烈,但结果表明,使用已建立的模型,预测的全球太阳辐射与测得的平均全球太阳辐射之间存在牢固的关系。基于T统计结果,城市的最佳经验方程为
b'\ xcb \ x98引导erom + 2 mbytes eRam w/ecc \ xcb \ x98内存接口(挥发性)\ xcb \ x98 ddr2/ddr3/ddr3/ddr4 \ xcb \ xcb \ x98存储器接口(非挥发性)内存传输'
摘要 — 氧化镓 (Ga 2 O 3 ) 是一种新兴的超宽带隙半导体,在辐射探测中的应用引起了广泛关注。在本文中,我们利用金属有机化学气相沉积 (MOCVD) 在蓝宝石上生长的高电阻率非故意掺杂 (UID) ε-Ga 2 O 3 薄膜制造了超快 X 射线探测器。该探测器采用横向金属半导体金属 (MSM) 结构,在 100 V 时表现出 < 2 nA 的低暗电流,在 40 V 和 X 射线剂量率为 0.383 Gy/s 时其灵敏度高达 28.6 nC/Gy 或 ∼ 1 . 0 × 10 6 nC/(Gy · cm 3 )。在切换 X 射线照明下观察到探测器稳定且可重复的瞬态响应。此外,该探测器实现了全宽50 ns的脉冲X射线探测,其时间分辨率约为7.1 ns。这些结果表明,MOCVD生长的高电阻率UID ε-Ga 2 O 3薄膜在超快X射线探测方面具有巨大的潜力。
摘要由于其低成本以及需要在本地运行计算密集型算法的需要,卫星和航天器越来越多地采用现成的计算硬件。然而,空间中的硬件暴露于地球上的辐射量明显高于地球上,可能会破坏硬件或导致其输出不正确的结果。我们设想,仅使用软件容忍技术,在太空中运行的商品硬件可以达到相当的容错或接近昂贵且缓慢的辐射硬化硬件。要实现此目标,我们需要解决两个主要的辐射故障场景:硬件过热和无声数据损坏。我们提供了有关这些错误影响的初步数据,并引入了一组解决这些错误的技术。使商品硬件在太空中充分使用,这有望通过数量级来提高低地球轨道卫星的计算能力和成本效益。CCS概念•网络→错误检测和错误校正; •计算机系统组织→可靠性; •软件及其工程→编译器;操作系统;关键字卫星计算,容错,辐射硬化
摘要由于其低成本以及需要在本地运行计算密集型算法的需要,卫星和航天器越来越多地采用现成的计算硬件。然而,空间中的硬件暴露于地球上的辐射量明显高于地球上,可能会破坏硬件或导致其输出不正确的结果。我们设想,仅使用软件容忍技术,在太空中运行的商品硬件可以达到相当的容错或接近昂贵且缓慢的辐射硬化硬件。要实现此目标,我们需要解决两个主要的辐射故障场景:硬件过热和无声数据损坏。我们提供了有关这些错误影响的初步数据,并引入了一组解决这些错误的技术。使商品硬件在太空中充分使用,这有望通过数量级来提高低地球轨道卫星的计算能力和成本效益。CCS概念•网络→错误检测和错误校正; •计算机系统组织→可靠性; •软件及其工程→编译器;操作系统;关键字卫星计算,容错,辐射硬化
到自由落体进入黑洞的质量的辐射[6-9])。同样,一个永恒的均匀加速边界(移动的镜子)显然不会向无穷远处的观察者发射能量,例如[10]。对于永恒均匀加速的微妙之处和非直观行为,目前尚未达成共识(有关选择真空态之间区别的可能理由,请参阅[11])。另一个非常有趣的方面[12]是渐近静态镜子保持幺正性和信息[13]。我们探索了一个融合均匀加速和零加速度这两种状态的模型,并直观地表明该系统可以在较长时间内以恒定功率辐射粒子。该系统不仅会保存信息,还会发射热能,守恒总辐射能量,并发射有限的总粒子,而不会发生红外发散。这个模型可以模拟黑洞完全蒸发。相关的探索并非史无前例。黑洞蒸发具有相近的加速类似物[14],包括移动镜像模型[4,15]。渐近无限加速轨迹[16],如史瓦西黑洞、雷斯纳-诺德斯特伦黑洞和克尔黑洞的加速边界对应关系[17-19],演化为永恒热平衡解[20]。渐近有限加速(渐近均匀加速)对应于极值黑洞[21-24],而渐近恒定速度(零加速度)可以提供描述黑洞残余模型(例如[25-31])的信息保留准热解。最近,人们特别关注以渐近零速度镜为特征的幺正完全黑洞蒸发模型(例如 [ 32 – 38 ])。纠缠熵 [ 39 ] 以及信息直接与镜轨迹相关 [ 40 ]。然而,远处的观察者探测到的是辐射功率,而不是熵。我们通过均匀加速的模拟情况研究了完全黑洞蒸发中这两者之间的联系。
