卷积神经网络(CNNS),是最重要的深度学习网络,用于构想者视觉,已进行了一系列的发展和改进,以进行与图像相关的任务,例如对象识别,图像分类,语义细分等。然而,在自然语言处理(NLP)领域,基于注意力的新网络变速器对机器翻译产生了深远的影响,随后导致了基于注意的计算机视觉模型的繁荣。具有关注的最新模型已经显示出对计算机视觉任务的良好性能。例如,与当前的卷积神经网络的表现相比,自我注意力学会在不同位置的细分或单词之间的关系。受视觉转移(VIT)的启发,我们提出了一个简单的新型变压器体系结构模型,称为Flexible Transformer,该模型继承了基于注意力的架构的属性,并且对于任意大小的输入而言是灵活的。除了自我注意事项外,VIT中的输入没有预处理,例如调整大小或裁剪,但在不改变它们的情况下保持完整,这可能导致信息失真或信息丢失。在本文中,我们想介绍一个满足这些要求的新颖而简单的体系结构。与艺术品相比,我们的模型流程输入具有任意图像大小的输入,而没有任何预处理和预处理成本。此外,实验的结果表明,尽管资源有限,该模型仍可以以很高的精度提供良好的结果。,即使灵活变压器的结果不如视觉变压器的结果准确,但它们显示了具有可变大小图像的图像分类任务中具有高性能的模型的潜力。研究的重要性为处理深度学习任务中的原始图像打开了可能性。基于原始输入,如果对拟议的模型进行了优化并在大型数据集上进行了进一步培训,则可以获得良好准确性的可靠结果。
图 5 演示了流行的 CNN 架构 UNET(Ronneberger 等人,2015 年)。UNET 的第一个组件是编码器,用于从输入图像中提取特征。第二个组件是解码器,用于输出每个像素的分数。该网络由五个不同的层组成,包括卷积层 (Conv Layer)、整流线性单元 (ReLU)、池化、反卷积层 (DeConv) 和 SoftMax。在这里,DNN 层的任务是只给输入图像中属于鱼身的像素高分,从而得到所示的白色斑点输出,显示鱼的位置
Xu,Dejia等。“ Neurallift-360:将野外2D照片提升到具有360度视图的3D对象。”IEEE/CVF计算机视觉和模式识别会议的会议记录。2023。2。
1实施各种灰度转换以增强图像。2实施直方图均衡技术。3编写一个程序,以在输入图像上应用卷积过程以进行图像平滑。4实现定向梯度(HOG)的直方图进行特征提取。5编写一个程序,以在输入图像上应用比例不变特征变换。6实施视频中背景减法的框架差异技术。7实施主成分分析以计算特征向量以降低维度。8实施对象检测算法yolo。9实现R-CNN算法进行对象检测。10使用光流技术实施运动估计。11实现对象识别。12实现面部表达识别。
新型成像平台的开发提高了我们收集和分析36个三维(3D)生物成像数据集的能力。计算的进步已导致能力37从这些数据中提取复杂的空间信息,例如组成,形态和38个多模式结构的相互作用,稀有事件以及多模式特征的整合39结合解剖学,分子和分子和转录组的信息(以及其他)信息。然而,这些定量结果中的精度40在本质上受到输入图像的质量的限制,该输入图像的质量可能包含缺失或损坏的区域,或者由于机械,时间或42个财务限制而导致的分辨率差。在完整成像的应用中(例如灯页显微镜和43个磁共振成像)至基于截面的平台(例如串行组织学和串行第44部分传输电子显微镜),成像数据的质量和分辨率已成为45个至高无上的。46
卷积层:CNN由几层组成,包括将卷积操作应用于输入图像的层。层使用学习的过滤器(内核)通过将过滤器滑过图像并执行求和和对比度[6],[9],从而从输入图像中提取特征。合并层:合并层通常放置在卷积层中。他们在小区域内汇总数据,以采样从卷积层得出的特征图。常见的合并操作包括最大池和平均池,该操作存储每个池字段中的最大值或平均值。激活函数:对于卷积和汇总过程的输出,使用称为Relu(纠正线性单元)的激活函数将非线性添加到网络中,从而可以研究组件之间的关系。完全连接的层:CNN通常在卷积和合并层后具有一个或多个层。通过在一个层和其他层的神经元中建立每个神经元之间的连接,这些层有助于高级表示和分类。培训:CNN通常是使用监督学习培训的,网络学会在其中映射输入图像为相应的标签或类别。随机梯度下降(SGD)及其变体是优化方法,用于通过反向传播获得训练。它调整网络的参数(权重和偏见),以最大程度地减少损失函数,以测量预测标签和真实标签之间的差异[10]。
我们提出了一个由VLM和LLMs组成的p API API,以及一组机器人控制功能。使用此API和自然语言查询提示时,LLM会生成一个程序来积极识别给定输入图像的属性。
摘要 — 图像融合是将多个输入图像组合成单个输出图像的过程,该输出图像比任何单个输入图像提供的场景描述更能描述场景。为了获得更好的视觉效果,需要对全色和多光谱图像或真实世界图像进行高分辨率图像融合。图像融合有多种方法,一些图像融合技术包括 IHS、PCA、DWT、拉普拉斯金字塔、梯度金字塔、DCT、SF。在许多应用中已经开发了几种数字图像融合算法。图像融合从给定场景的多个图像中提取信息,以获得最终图像,该图像具有更多适合人类视觉感知的信息,并且更适合额外的视觉处理。它还打算回顾图像融合算法的质量评估指标。在像素级、特征级探索灰度图像融合技术,并回顾每种技术的概念、原理、局限性和优势。