为什么会出现有偏见的算法预测,以及哪些干预措施可以防止它们?我们通过一项关于使用机器学习预测人力资本的现场实验来研究这个主题。我们随机分配约 400 名人工智能工程师开发软件,以预测不同实验条件下经合组织居民的标准化考试成绩。然后,我们使用实际的测试表现以及通过随机审计式的算法输入操作来评估由此产生的预测算法。我们还利用了受试者人群的多样性来衡量人口统计学上非传统的工程师是否更有可能注意到并减少算法偏差,以及算法预测误差是否与程序员人口统计学群体相关。本文档描述了我们的实验设计和动机;我们实验的完整结果可在 https://ssrn.com/abstract=3615404 上找到。
(2022年3月23日收到; 2022年6月25日修订; 2022年8月6日接受)摘要 - 对于车辆状态估算,传统的卡尔曼过滤器在高斯假设下表现良好,但在实际的非高斯局势(尤其是当噪声是非高斯的重型尾巴)中,它表现出较差的准确性和鲁棒性。在本文中,提出了基于最大相关标准(MCC)的扩展卡尔曼过滤器(EKF)算法(MCCEKF),并建立了横向纵向耦合的车辆模型,同时使用YAW速率,longipudinal peppare的状态观察者,使用了longitialinal peppare,该速度使用了易于使用的速度。在分析了所提出算法的复杂性后,通过双车道变化和正弦扫描转向扭矩输入操作在Simulink/CARSIM仿真实验平台上验证了新算法。实验结果表明,与传统的EKF算法相比,基于MCC的EKF算法在非高斯噪声的情况下具有更强的鲁棒性和更好的估计精度,而MCCEKF在实际情况下更适合于车辆状态估计。关键词:车辆状态估计,最大Correntropy标准,非高斯噪声,车辆动力学1。简介
摘要:当使用凝视运动操作电动轮椅时,检查环境和观察物体等眼球运动也会被错误地识别为输入操作。这种现象被称为“点石成金问题”,对视觉意图进行分类非常重要。在本文中,我们开发了一种实时估计用户视觉意图的深度学习模型,以及一种结合意图估计和凝视停留时间方法的电动轮椅控制系统。所提出的模型由 1DCNN-LSTM 组成,它从 10 个变量的特征向量估计视觉意图,例如眼球运动、头部运动和到注视点的距离。对四种视觉意图进行分类的评估实验表明,与其他模型相比,所提出的模型具有最高的准确性。此外,实施所提出模型的电动轮椅的驾驶实验结果表明,与传统方法相比,用户操作轮椅的努力减少了,轮椅的可操作性得到了提高。从这些结果中,我们得出结论,通过从眼球和头部运动数据中学习时间序列模式可以更准确地估计视觉意图。
•高效率,1.5MHz,单电池电池的同步切换模式 - > 90%的效率 - 从5V输入到25mA输出的电流 - 从10mA到620mA的充电终止,10mA,10mA步骤,灵活的JEITA轮廓 - 弹性JEITA概况,可用于安全•batfet控制•batfet控制•当前型号和全型型号的电量型乘型型号 - 1.5型电池 - 1.5型电池 - 乘飞机 - 乘船乘坐型号。模式 - 0.1μa电池电量泄漏电流•支持广泛的输入源 - 具有26V最大最大输入电压的广泛输入操作电压范围 - 使用输入电压调节(VINDPM)(VINDPM)和输入电流调节(IINDPM)(IINDPM)(IINDPM) - VINDPM THERESHOLD自动范围范围范围•有效的电池•有效的电池••有效的电池操作(IINDPM)•有效•有效的电池• management – System instant-on with depleted or no battery – Battery supplement when adapter is fully loaded • Flexible autonomous or I 2 C-controlled modes • Integrated 12-bit ADC for voltage, current, temperature monitoring • High accuracy – ±0.5% charge voltage regulation – ±5% charge current regulation – ±5% input current regulation • Safety – Thermal regulation and thermal shutdown – Input, system, battery电压保护 - 电池,转换器过电流保护 - 充电安全定时器•安全相关认证 - IEC 62368-1 CB认证
HL7019 3A I 2 C Controlled USB/Adapter Li-Ion Battery Charger with Power Path and 2.1A OTG Boost Overview The HL7019 is a fully integrated switch-mode Li- ion battery charger with power MOSFET, power path management, I 2 C interface and USB On- the-Go (OTG) boost function.可以与平行锂离子和Li-od-opymer电池中的单个单元格或多单元一起使用,并在各种手机,智能手机,平板电脑,电力库和其他便携式设备中使用。其开关模式操作和低抗性功率路径最大化充电,放电和提高效率。它还减少了电池充电时间,并在放电阶段延长电池寿命。此设备支持广泛的输入源,包括标准USB主机端口,USB充电端口和高功率AC-DC适配器。它支持从3.9V到14V的输入操作电压,并且可以无电池为系统导轨供电。它可以通过输入动态功率管理控制(INDPM)自动调整到输入源的最大功率输出。HL7019在不存在I 2 C主机的情况下自动地管理锂离子电池的完整充电周期。它检测到电池电压并自动为电池充电四个阶段:trick流动,预处理,恒定电流和恒定电压。如果电池电量的电池电压低于充值阈值,它将自动终止充电并重新启动充电周期。对于短路受保护的电池,它可以通过在电池启动之前向电池端子提供浮动电压来重新激活电池。其I 2 C接口提供了充电参数和系统级通信的最大可编程性。
1。引言在机器人技术领域,尖端技术的融合为重新定义自动系统功能的创新解决方案铺平了道路。该项目标志着这一轨迹的重大大步,引入了以双重控制范式语音和蓝牙为特色的智能机器人车辆。机器人车辆将接受用户语音命令并执行给定的用户任务,而没有人类的存在,可以通过用户语音输入来控制机器人。机器人可以通过用户语音输入操作。它需要一个Android应用来通过蓝牙HC-05模块进行通信。然后,机器人车辆可以借助超声传感器模块感知对象。对于硬件,自定义的Arduino将控制用于运行机器人车辆的电机。超声传感器与Arduino在突然障碍物检测中自动制动车辆的帮助。避免机器人目前在人类无法进入的危险区域中使用。它可以很容易地识别声音。在此设计中,使用微控制器的Android应用程序用于所需的任务。用蓝牙技术促进了应用程序和机器人之间的连接。这项工作的核心目标是创建一种机器人车辆,能够通过与用户无缝互动来执行用户定义的任务。由专用的Android应用程序促进的语音控制集成使用户可以直观地与机器人工具进行通信。同时由HC-05模块启用的蓝牙连接提供了额外的控制层,增强用户可访问性并扩展了车辆的操作范围。此中央控制单元可以解释语音命令和蓝牙输入,从而授权机器人车辆自治,以有效地浏览其环境。补充这些控制功能是超声波传感器模块,可确保实时障碍物检测并促进自动制动以提高安全性。在机器人技术中,为智能机器人车提供了语音和蓝牙控制的无缝集成。其双控制能力,再加上避免障碍物,为自主系统设定了新标准。因此,无缝特征诸如障碍物控制和声音以及机器人的蓝牙控制能力。
•与BQ25703A兼容的针脚和软件•充电1至4S电池从广泛的输入源 - 3.5-V至24-V输入操作电压 - 支持USB2.0,USB 3.0,USB 3.0,USB 3.1(C型C)和USB电源(USB供应(USB-PD)输入(USB-PD)输入(USB-PD) - 无需(USB-PD)的运算 - 毫无目前的运算 - (IDPM和VDPM)针对来源超负荷•电源/当前的CPU节流电源监视器 - 全面的ProChot轮廓,IMVP8/IMVP9符合符合的和电池电流监视器 - 系统电源监视器 - IMVP8/IMVP9兼容•符合范围的电压DC(NVDC)电源型电池管理 - 无电量型电池组件 - 电池组件 - 电池启动 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池电量 - 电池 - 电池 - 电池电量 - diode operation in supplement mode • Power up USB port from battery (USB OTG) – 3-V to 20.8-V VOTG With 8-mV resolution – Output current limit up to 6.4 A with 50-mA resolution • TI patented Pass Through Mode (PTM) for system power efficiency improvement and battery fast charging • When system is powered by battery only, Vmin Active Protection (VAP) mode supplements battery from input capacitors during system peak power spike •输入当前优化器(ICO)以提取最大输入功率•800-kHz或1.2-MHz可编程的可编程开关频率,以2.2-µh或1.0-µh电感器或1.0-µh电感器•用于灵活的系统配置的主机控制接口 - I 2 C端口最佳系统性能和状态的最佳系统性能和状态报告 - 无需进行EC的限制•电动量•电动量•电动量•电动量•电动量•电动量•电动量•电动量•电动量•
绩效衡量标准 通过 不通过 N/A 1. 使用正确的格式填写 CBRN 4 报告的所有必填(M)行。 注意:QUEBEC、ROMEO 和 SERRA 行最多可重复 20 次,以描述多个探测器和监测或调查点。 a. 填写化学或生物攻击的所有必填(M)行,例如“CBRN 4/CHEM// 或 CBRN 4/BIO//”。 (1) 输入行 INDIA:发布化学事故信息,然后输入“//”。 例如“I/AIR/NERV/P/MPDS/-//”。 (2) 输入行 QUEBEC:读数/样本/检测的位置以及样本/检测的类型,然后输入“//”。例如“Q/31UDS986628/LIQ/MPDS/-/OM/31UDS988628/LIQ/MPDS/- /OM/31UDS992628/LIQ/MPDS/-/OM//”。 (3) 输入行 SERRA:DTG(日期-时间-组,指定本地或祖鲁 (L/Z))读数或初始污染检测,然后输入“//”。 例如“S/030830ZAPR2017/030845ZAPR2017/030905ZAPR2017//”。 (4) 输入已知的操作确定集 (O) 行,然后输入“//”。 例如“T/FLAT/BARE//”。 b. 完成放射性攻击的所有必填 (M) 行。 例如“CBRN 4/RAD//”。 (1) 输入行 INDIAR:发布有关放射事件的取样信息,然后输入“//”。例如“IR/RDPS/GAM/-/PD//”。 (2) 输入行 QUEBEC:读数/样本/检测的位置以及样本/检测的类型,然后输入“//”。例如“Q/504056N0021515W/-/HGSM/506056N0021515W/-/HGSM//”。 (3) 输入行 ROMEO:污染程度、剂量率趋势和衰减率趋势(如果已知)则输入“//”。例如“R/30CGYH/32CGYH//”。 (4) 输入行 SERRA:读数或初始污染检测的 DTG,然后输入“//”。例如“S/100209ZAUG2010//”。 (5) 输入操作确定集(O)行已知,然后输入“//”。例如“T/FLAT/URBAN//”。c. 已完成核攻击的所有必填 (M) 行。例如“CBRN 4/NUC//”。 (1) 输入行 QUEBEC:读数/样本/检测的位置以及样本/检测的类型,然后输入“//”。例如“Q/31UDS984628/-/MPDS/HGSM/31UDS984626/-/MPDS/HGSM//”。 (2) 输入行 ROMEO:污染程度、剂量率趋势和衰减率趋势。剂量率趋势/衰减率,然后输入“//”。例如“R/38CGH/DECR/DN/36CGH/DECR/DN//”。 (3) 输入行 SERRA:读数或初始污染检测的 DTG,然后输入“//”。例如“S/030900ZAPR2010/030905ZAPR2010//”。 (4) 输入已知的操作确定集 (O) 行,然后输入“//”。 例如“W/POS/POS/Y/HIGH//”。 2. 在 GEN-TEXT 中完成所有管理数据。 a. 输入发件人:输入您的单位标识,然后输入“/”。 b. 输入收件人:输入接收单位的单位标识,然后输入“/”。 c. 输入安全分类,然后输入“/”。 d. 输入发送的 DTG:使用八位数字(DDHHMM - 2 位数字表示日期,4 位数字表示军事时间和 L/Z),然后输入“/”。 e. 输入报告类别:如果这是您提交的关于此次袭击的第一份报告,请输入 INITIAL;否则,请输入 FOLLOW-UP,然后输入“//”。示例“GEN-TEXT/WAT40B/WAT4AA/UNCLASS/030905Z/INITIAL//”。3. 提交 CBRN 4 报告,并指定适当的优先顺序(消息顶部的“F/F/F//”或“O/O/O//”)示例“F/F/F//”,IAW SOP。
计算机系统的框图是一个视觉表示,可展示其主要组件以及它们如何相互作用。此解释将深入到计算机的框图中,并探索其各个部分。计算机的主要元素包括CPU(中央处理单元),内存,输入设备,输出设备,所有这些都对其操作至关重要。框图提供了系统的简化视觉概述,突出显示了关键组件及其互连。计算机的基本框图将说明这些主要部分以及它们如何共同发挥作用。让我们在计算机框图的上下文中检查每个重要组件。从CPU或中央处理单元开始,它本质上是计算机的大脑,负责处理数据,执行程序和管理硬件组件。CPU的主要角色是运行程序,同时还控制输入/输出设备和内存。在较小的计算机中,微处理器芯片用作CPU。CPU的关键子组件包括控制单元(CU),算术和逻辑单元(ALU)和累加器寄存器。控制单元充当各种计算机操作的协调员,促进输入单元,输出单元,ALU和主内存之间的通信。它负责控制计算机内的所有活动,从内存中接收说明,将其转换为计算机不同部分的信号,并生成必要的时机和控制信号以执行这些说明。这些功能是:1。2。算术和逻辑单元(ALU)执行基本的算术操作,例如加法,减法,乘法和数据,以及逻辑操作,例如和或,或,或,或,或,不及排他性。它处理数据和指令,并可以执行其他功能,例如合并,分类和选择数据。从内存中接收数据后,Alu进行操作,然后将结果发送回存储器或输出单元。寄存器用于在处理过程中存储临时结果和数据。通过快速访问正在处理的数据,他们在计算机的有效操作中起着至关重要的作用。CPU及其子组件(例如控制单元,ALU和寄存器)与其他组件(例如内存,输入设备和输出设备)和谐相处,以确保计算机系统的平滑功能。了解这些元素及其相互作用是掌握计算机运行方式的基础。计算机中内存的主要目的是存储信息,具有两种主要类型:主内存/主内存和次要内存/辅助内存。前者是挥发性的,关闭时会丢失存储的信息,而后者保留了永久数据。其他记忆(例如缓存内存和虚拟内存)增强了性能。输入设备通过将原始数据转换为二进制形式,使用户能够将原始数据输入到计算机中。它们是用户和计算机之间的中介者,采用各种形式的数据,例如文本,图像,音频或视频。相比之下,输出设备以各种格式显示了来自计算机的处理数据。关键功能包括处理用户数据,将其转换为机器可读的二进制代码(0s和1s),将转换的数据传输到主内存中,并且通常使用标准输入设备(例如键盘)。输入设备的示例包括键盘,鼠标,扫描仪,麦克风/相机,操纵杆,轻笔和轨迹球。他们将处理的数据转换为可读形式(通常是十进制或字母数字),显示,打印,播放或投射给用户。输出设备的示例是监视器,打印机,扬声器和投影仪。此表示形式是计算机组件的一般概述,该概述可能会根据台式机,笔记本电脑,服务器等及其设计(例如台式机,笔记本电脑,服务器等)等计算机的类型而有所不同。数字计算机处理数字数据,该数据以二进制形式呈现。这与使用连续数据的模拟计算机不同。CPU或中央处理单元是进行所有计算和操作的数字计算机的主要组件。它从各种来源获取输入数据,根据程序说明对其进行处理,并产生数字输出。CPU具有两个主要功能:执行算术和逻辑操作,例如加法,减法,乘法和划分,以及执行逻辑操作,例如和或,或,或,不和排除。这些操作对于分析和评估数据至关重要,该数据通常与存储在程序或内存中的一组已知值相匹配。计算机中的内存是数据和程序的存储库,类似于笔记本以供将来参考。3。可以将其分类为两种主要类型:主要内存,用于在执行过程中暂时存储数据和程序,以及用于存储不需要直接CPU访问的操作系统,编译器和应用程序的辅助内存。输入单元接受来自外部来源的指令和数据,将它们转换为可读的计算机可读格式,并将其提供给系统以进行处理。输出单元接受计算机产生的结果,将其转换为人类可读格式,并将其提供给外界。计算机组件和操作计算机的功能基于四个主要组件:数据,图片,声音和图形。这些元素使计算机能够迅速,准确地解决复杂问题。如图所示,计算机系统执行五个基本功能,无论其尺寸或配置如何。数据输入:这涉及将信息和程序输入计算机系统。数据存储:此过程永久保存数据和指令。数据处理:中央处理单元(CPU)根据给定指令根据数据执行算术和逻辑操作。4。输出生成:计算机由处理的数据产生结果,然后将其存储以进行进一步处理。5。控制操作:控制单元执行指令并监督所有操作的分步性能。输入操作:输入过程涉及将原始数据馈送到计算机系统中。该数据是组织和处理以产生输出的。存储操作:数据存储在系统中永久保存信息。在处理开始之前,由于CPU的快速处理速度,必须将数据馈入系统。主存储单元在CPU处理它们时暂时存储数据和指令。计算机在其功能单元之间分配任务,以执行上一节中概述的操作。该系统包括三个主要组件:算术逻辑单元(ALU),逻辑单元,控制单元(CU)和中央处理单元(CPU)。