1)按MIL-STD-883,方法3015,2级。2)指定的规格反映高剂量率(1019条件A)至100 krad(si) @ +25℃。3)线条和负载调节被保证至15W的最大功率耗散。功率耗散由输入/输出差分电压和输出电流确定。在完整的输入/输出电压范围内,保证最大功率耗散将无法提供。4)在设备的完整输出电流范围内指定了辍学电压。5)未测试。应通过与其他测试参数的设计,表征或相关性来保证。6)通过降低输入电压来测试辍学电压,直到输出低于其名义值1%。测试在0.5a和3a时进行。功率晶体管基本上看起来像是该范围内的纯电阻,因此可以通过插值计算任何中间电流的最小差异。 vdropout = 0.25V +(0.25Ωx i out)。对于负载电流小于0.5a,请参见图4。7)“最小输入电压”受功率晶体管部分的基本发射器电压驱动器的限制,而不是注释6中测量的饱和度。对于低于4V的输出电压,“最小输入电压”规范可能会在晶体管饱和限制之前限制掉落电压。8)供应电流是在地面引脚上测量的,不包括负载电流,RLIM或输出分隔电流。
防爆信息 该电源适用于 2 区 EPL Gc 爆炸性环境。设备采用 Ex 'ec' 防护类型保护,内部继电器采用 Ex 'nC' 防护类型密封装置保护。它是一款性能良好的单相输入单输出 AC-DC 模块。它具有输出过流保护、输出过压保护、输出短路保护、过温保护等功能,组合调节性能好,效率高。当输入电压在 85VAC - 164VAC 之间,环境温度在+50 ℃ 至+85 ℃ 之间时,功率需降额 2.0%/K;当输入电压在 165VAC - 264VAC 之间,环境温度在+60 ℃ 至+85 ℃ 之间时,功率需降额 2.8%/K。
AD52058C 具有直流检测电路,可保护扬声器免受由于输入电容缺陷或印刷电路板输入短路而产生的直流电流的影响。检测电路检测第一级音量放大器输出,当两个差分输出电压高于确定电压或低于确定电压超过 340 毫秒时,将发生直流检测错误并报告给 FAULT 引脚。同时,右/左声道的扬声器驱动器将禁用并进入 Hi-Z。此故障无法通过循环 SD 来清除,必须循环 PVCC 电源。触发直流检测功能所需的最小差分输入电压如表 1 所示。输入电压必须保持高于表中列出的电压超过 340 毫秒才能触发直流检测故障。直流检测阈值的等效 D 类输出占空比列于表 2 中。
本文根据低压差稳压器的行为,演示了如何使用数值模拟数据,基于加速退化测试数据进行可靠性性能评估。该稳压器采用 Cadence Virtuoso 软件和 180 nm AMS CMOS 技术设计,并通过模拟评估其输出电压随温度和输入电压的变化。输出电压退化数据是根据环境参数(输入电压和温度)约束生成的,这使得我们能够利用数值模拟模型和所提出的退化模型定义加速条件下的故障阈值。采用退化路径模型确定指定故障标准(5%)下的伪故障时间。然后,我们推导出加速度定律模型,通过执行最大似然估计法来估计可靠性模型参数,不仅可以分析,还可以预测不同电压和温度应力条件下稳压器的寿命数据分布。
• 1A 线性电池充电器 – 3.0V 至 18V 输入电压工作范围,适用于电池到电池充电、USB 适配器和高阻抗源。 – 可配置电池调节电压,精度为 0.5%,范围为 3.6V 至 4.65V,步长为 10mV – 支持锂离子、锂聚合物和磷酸铁锂化学成分 – 5mA 至 1A 可配置快速充电电流 – 55mΩ 电池 FET 导通电阻 – 高达 3A 的放电电流,可支持高系统负载 – 可配置 NTC 充电配置文件阈值,包括 JEITA 支持 • 电源路径管理,用于为系统供电和为电池充电 – 除电池电压跟踪外,调节系统电压 (SYS) 的范围为 4.4V 至 5.5V – 适用于高阻抗输入源的电池跟踪输入电压动态电源管理 (VINDPM)
AP1313 需要适当的输入电容来在阶跃负载瞬变期间提供电流浪涌,以防止输入电压轨下降。因为从电压源或其他大容量电容到 VIN 引脚的寄生电感限制了浪涌电流的斜率,所以寄生电感越大,输入电容就越大。超低 ESR 电容(如陶瓷芯片电容)和低 ESR 大容量电容(如固体钽电容、POSCap 和铝电解电容)都可以用作 VIN 的输入电容。对于大多数应用,建议的 VIN 输入电容至少为 10µF。但是,如果不关心输入电压的下降,输入电容可以小于 10µF。输出电容 AP1313 专门设计用于与低 ESR 陶瓷输出电容配合使用,以节省空间。建议使用电容至少为 4.7µF 且 ESR 大于 1mΩ 的陶瓷电容。大输出电容可以降低噪音并改善负载瞬态响应。图 2 显示了允许的 ESR 范围与负载电流和输出电容的关系。
摘要 - 本文介绍了用于电动汽车电池充电应用的单端初级电感转换器 (SEPIC) 的设计和仿真。SEPIC 转换器是一种 DC-DC 转换器,旨在提供稳定的输出电压,同时适应各种输入电压。SEPIC 转换器以其高效率和高可靠性而闻名,可以将输出电压调节为高于或低于输入电压。DC-DC 转换器因其低输出电压纹波和高效率而特别吸引研究人员,使其成为需要低噪声和高功率密度的应用的理想选择。DC-DC 转换器性能和可靠性的不断进步对于满足现代技术日益增长的需求至关重要。SEPIC 转换器与降压-升压转换器有相似之处,结合了降压和升压功能,具有输入和输出电压极性相同、效率高以及输出侧和输入侧之间电容隔离等优点。本文使用 MATLAB 软件对开环和闭环配置中的 SEPIC 转换器进行了仿真,并进行了介绍。
电子设备通常需要恒定电压才能正常运行。例如,微控制器、集成电路和传感器通常在特定电压范围内工作。如果提供给这些设备的电压偏离所需水平,则可能导致行为不稳定或永久性损坏。因此,无论输入电压或负载条件如何变化,都采用电压调节电路来保持一致的电压水平。
1。不要以无人看管的方式使用充电器,如果有任何功能异常,请停止使用它并参考手册。2。使充电器远离灰尘,湿度,雨水和高温,并避免直接暴露于阳光和强烈的振动。3。充电器的输入电压为6.5-30v dc。连接电源时,请确保输入电压与充电器的工作电压范围匹配。4。请将充电器放在耐热,不易燃和绝缘表面上。不要将其放在汽车的座椅上,地毯或其他类似地方来使用它。使炎症和爆炸物的物体远离充电器的操作区域。5。在使用时确保发现充电器侧面的热发射孔,并确保冷却风扇平稳提取热量。6。请充分了解充电和放电特性以及电池的规格。此外,在充电器中设置了适当的充电参数。参数的设置不正确会损坏充电器和电池,或者造成灾难性后果,例如火灾或爆炸。7。充电或排放完成后,请按O键终止当前任务,并在充电器显示备用屏幕时卸下电池。
1。不要以无人看管的方式使用充电器,如果有任何功能异常,请停止使用它并参考手册。2。使充电器远离灰尘,湿度,雨水和高温,并避免直接暴露于阳光和强烈的振动。3。充电器的输入电压为6.5-30v dc。连接电源时,请确保输入电压与充电器的工作电压范围匹配。4。请将充电器放在耐热,不易燃和绝缘表面上。不要将其放在汽车的座椅上,地毯或其他类似地方来使用它。使炎症和爆炸物的物体远离充电器的操作区域。5。确保在使用时发现充电器底部的热发射孔,并确保冷却风扇平稳提取热量。6。请充分了解充电和放电特性以及电池的规格。此外,在充电器中设置了适当的充电参数。参数的设置不正确会损坏充电器和电池,或者造成灾难性后果,例如火灾或爆炸。7。充电或排放完成后,请按速班键终止当前任务,并在充电器显示备用屏幕时卸下电池。