DSP-3000 采用 KVH 专利的数字信号处理 (DSP) 电子设备。KVH 突破性的 DSP 设计克服了模拟信号处理的局限性,几乎消除了温度敏感的漂移和旋转误差。此外,KVH 的 DSP 技术在比例因子和偏置稳定性、比例因子线性度、开启到开启重复性和最大输入速率等关键领域提供了显著的性能改进。超低噪音 (ARW)、对横轴误差的不敏感性以及冲击和振动稳健性使 DSP-3000 成为要求苛刻的工业应用的理想选择。这种性能与我们成熟的全光纤光学电路固有的简单性和可靠性相结合,使 DSP-3000 成为运动感应、稳定、导航和精确指向应用的出色且经济实惠的解决方案。
整个 DSP-3000 系列均采用 KVH 的专利数字信号处理 (DSP) 电子设备。KVH 的突破性 DSP 设计克服了模拟信号处理的局限性,几乎消除了温度敏感漂移和旋转误差。此外,KVH 的 DSP 技术在比例因子和偏置稳定性、比例因子线性度、开启到开启重复性和最大输入速率等关键领域提供了显著的性能改进。超低噪音 (ARW)、对交叉轴误差的不敏感性以及冲击和振动稳健性使 DSP-3000 系列成为要求苛刻的工业应用的理想选择。这种性能与我们成熟的全光纤光学电路固有的简单性和可靠性相结合,使 DSP-3000 系列成为运动感应、稳定、导航和精确指向应用的经济实惠的出色解决方案。
摘要:本文提出了一种增量反步滑模(IBS)控制器,用于无尾飞机的轨迹控制,该控制器具有未知干扰和模型不确定性。所提出的控制器基于无尾飞机的非线性动力学模型。提出了一种限制虚拟控制输入速率和幅度的稳定性增强器(SE)。稳定性增强器由两层组成。当虚拟控制输入接近边缘时,将激活第一层 SE 来修改轨迹跟踪误差;当虚拟控制输入超出边缘时,第二层 SE 将降低控制增益以确保虚拟控制输入尽快落在边缘内。在 SE 的帮助下,增量控制方法可以扩展到外环控制,而无需考虑内环系统的动态特性。此外,提出了一种状态导数自适应估计器,与 IBS 相结合,使控制器表现出良好的鲁棒性。最后,给出了两个仿真。第一次仿真表明系统对外部干扰和模型不确定性不敏感,第二次仿真证明了 SE 的有效性。
*通讯作者电子邮件:lokshv83@gmail.com摘要控制释放系统用于控制通过各种可能的途径给药后药物的血浆浓度。这些是在固定时间段内以预定模式释放药物的系统。释放动力学通常为零。理想情况下,剂型的释放速率应是吸收药物的速率步骤,实际上应该是血浆和靶位部位中药物浓度的速度。受控释放配方将降低每日所需的给药频率。本文提供了理想的要求,优势,属性和不同的方法,以开发受控释放公式,以更好地输送药物。关键字:受控释放,给药频率,药物浓度,血浆浓度,零订单引入控制释放药物输送系统在过去的二十年中受到了广泛的关注,在市场上有许多技术复杂的产品。这些进步是由于许多因素的同时收敛而产生的,包括发现新型聚合物,配方优化,对生理和病理学约束的更好理解,开发新药实体的过度成本以及在药品设计中引入生物技术和生物技术和生物学药物。这些产品的主要好处在于将药物输入速率优化到系统循环中,以实现适当的药效反应。此反过来应增加产品安全性,并降低由于对血液水平的控制,因此重大不良药物反应的程度和发生率和发生率。此外,以较少的给药,据推测,这应该提高患者的依从性并可能最大化治疗药物的药物生产疗效。最近已经研究了许多亲水性聚合物,目前已用于复杂受控释放系统的设计[1]在许多情况下
将氢混合到天然气中,作为缓解与使用化石燃料有关的环境问题的一种手段,提出了一个由氢气和天然气混合物加油时设计用于天然气的设备性能的问题。这项研究研究了由甲烷作为天然气代理燃料的空间和水加热设备的性能,以及含有多达15%氢的甲烷/氢混合物的性能。使用适用的CSA/ANSI Z 21系列标准,使用三种气体混合物(纯甲烷,5%氢/甲烷混合物和15%氢/甲烷混合混合物)测试了设备的输入速率,点火和燃烧器的工作特性,燃烧产物特性和气体泄漏。气体成分对炉子的影响还测试了温度升高和加热管温度。还评估了露水的露点温度和酸度。总体而言,电器没有出现重大可操作的问题和一致的热量输出降低和CO 2排放,并随着甲烷/氢混合物中的氢含量增加。因此,要满足相同的热量需求,电器将需要在更长的时间内运行,从而导致额外的二氧化碳排放。然而,与天然气相比,使用混合物的使用,相同热量输出的总体CO 2排放量仍会降低。一氧化碳和氧化氮的测量值在可接受的范围内,无论使用的燃料类型如何。对于其他测得的特性没有观察到一致的趋势,表明高达15%的氢混合物不会显着影响这些参数。对本文所检查的含有5%和15%氢的气体混合物的未来测试以及较高的氢量应该融合天然气以确定更具代表性的结果。