在输出图像中分别k Depthise(I,J,K)和k点(i,j,k)代表可分开的卷积的操作。
摘要 — 图像融合是将多个输入图像组合成单个输出图像的过程,该输出图像比任何单个输入图像提供的场景描述更能描述场景。为了获得更好的视觉效果,需要对全色和多光谱图像或真实世界图像进行高分辨率图像融合。图像融合有多种方法,一些图像融合技术包括 IHS、PCA、DWT、拉普拉斯金字塔、梯度金字塔、DCT、SF。在许多应用中已经开发了几种数字图像融合算法。图像融合从给定场景的多个图像中提取信息,以获得最终图像,该图像具有更多适合人类视觉感知的信息,并且更适合额外的视觉处理。它还打算回顾图像融合算法的质量评估指标。在像素级、特征级探索灰度图像融合技术,并回顾每种技术的概念、原理、局限性和优势。
•设计了一种以自定义目标函数为指导的基于优化的方法,以学习stylegan2的潜在空间中的歧管,与输出图像中的局部变化相对应(例如歧管内的潜在向量仅改变面部同一图像的口区域)
F = 到物体的距离 (mm) f = 焦距 (mm) H = 物体的物理高度 (mm) h = 传感器上物体的高度 (mm) s = CCD/CMOS 传感器的高度 (mm) L = 输出图像的高度 (px) l = 图像中物体的高度 (px)
二维操作主要用于改变图像的大小和形状,或在二维中进行滤波。后者的操作包括高通滤波器(用于锐化所有方向的边缘)或低通滤波器(用于限制高频噪声或故意柔化边缘)。一个重要的例子是图像调整大小,其中输入图像被重新采样为不同大小的输出图像。在减小图像尺寸时,需要进行滤波,因为简单地垂直和水平下采样(丢弃像素)会产生不可接受的混叠。二维滤波器可以由一维滤波器制成(图 12)。在这里,HSP43168 双 FIR 滤波器在水平下采样之前提供水平频带限制。其多速率功能使其能够执行整个抽取操作。然后使用 HSP48908 二维卷积器作为三系数垂直滤波器,在垂直下采样之前减少垂直带宽。
摘要。使用给定的重新函数优化文本对图像扩散模型是一个重要但毫无争议的研究领域。在这项研究中,我们提出了深度奖励调整(DRTUNE),该算法直接监督文本到图像扩散模型的最终输出图像,并通过迭代采样过程向输入噪声进行后退。我们发现,采样过程中的较早步骤对于低水平的奖励至关重要,并且可以通过停止denoing net-work-work-work-work输入的梯度来有效地实现深层监督。Drtune在各种奖励模型上进行了广泛的评估。它始终优于其他算法,尤其是对于所有浅层监督方法失败的低级控制信号。此外,我们通过DRTUNE微调稳定扩散XL 1.0(SDXL 1.0)模型,以优化人类偏好得分v2.1,从而导致有利的扩散XL 1.0(FDXL 1.0)模型。FDXL 1.0显着提高了图像质量,并且与Midjourney v5.2相比,质量可比。5
摘要在本文中,我们旨在使用深层神经网络从多云的光学图像和对齐的合成孔径雷达(SAR)图像中恢复无云的光学图像。与以前的方法相反,我们观察到卫星图像特征通常没有首选方向。通过使网络层遵守改变输入图像的方向的几何约束,可以将此见解纳入神经座的设计中,只能改变相应的输出图像的方向,而不必影响秘密的质量或细节。我们构建了一个多模式旋转 - 等级神经网络,称为EquICR(Equivariant Cloud Removal),该网络准确地编码了此几何。在接受公共SEN12MSCR数据集接受培训时,我们观察到使用EquiCR的重建图像质量的改善,与使用深度学习无内置旋转等效性相比。有趣的是,在更困难的情况下,当云覆盖量很高或训练数据集很小时,EquiCR对基线方法的改善更大。
图 3 (a) 基于皱纹石墨烯-AuNPs 混合结构的光电探测器集成在隐形眼镜上及其光响应。[31] 经皇家化学学会许可转载。(b) 当激光点照射电极之间的 rGO 区域时,会发生光伏响应,并且与激光点的位置有关。[32] 经 Springer Nature Limited 许可转载。(c) 用半导体量子点光电探测器敏化的柔性石墨烯的摄影图像和示意图。(d) 基于光电探测器的反射模式和透射模式 PPG 的光电容积图 (PPG) 的示意图和 (e) 摄影图像。(f) 光电探测器透射和反射模式的归一化 PPG 结果。[36] 经美国科学促进会许可转载。 (g)由五苯有机半导体、金纳米粒子(AuNPs)构成的柔性石墨烯光电探测器的示意图和照片图像。(h)石墨烯光电探测器的存储性能。[33] 经美国化学学会许可转载,版权所有。(i)柔性石墨烯/钙钛矿光电探测器阵列(24×24像素)的示意图和照片图像。(j)用于颜色辨别的柔性石墨烯/钙钛矿光电探测器图像传感器的示意图和相应的输出图像。[34] 经中国科学出版社许可转载。
显着对象检测(SOD)旨在识别引起人类注意力的图像中最重要的区域。这些地区通常包括汽车,狗和人等物体。在图1中,在视觉上表示显着的对象检测后的输入和输出图像。它旨在模仿人类的关注,以关注现场的引人注目。识别图像中的显着区域可以促进后续的高级视觉任务,提高效率和资源管理并提高绩效(Gupta等,2020)。因此,SOD可以帮助过滤不相关的背景,并且草皮在计算机视觉应用中起着重要的预处理作用,为这些应用提供了重要的基本处理,例如细分(Donoser等,2009; Qin等,2014; noh et al。 Borji和Itti,2019年; Akila等人,2021年,2021年;现有的SOD方法可以大致分为两个类:1)常规方法; 2)基于深度学习的方法,如图2所示。传统方法利用低级特征和一些启发式方法来检测包含基于局部对比的基于扩散的贝叶斯方法,先验和经典监督的显着对象。此外,基于深度学习的方法可以帮助提取全面的深层语义特征以提高性能。可以进一步分类为完全监督的学习(Wang等,2015a; Lee等,2016a; Kim and Pavlovic,2016; He et al。,2017a; Hou等,2017; Shelhamer等,2017; Shelhamer et al。,2017; Su等,2019; Su等人,2019年)和弱监督的学习(Zhao Al Al Al Al Al。 Al。,2018年,2018年; Zhang等人,2020a;本文将根据两个
随着人工智能逐渐融入我们日常生活的各个方面,从手机到汽车驾驶,艺术家开始尝试人工智能也是理所当然。然而,这并不是一个全新的趋势。自 50 多年前人工智能诞生以来,艺术家们一直在编写计算机程序来创作艺术作品,在某些情况下还融入了智能元素。这类作品最著名的早期例子是哈罗德·科恩和他的艺术创作程序 AARON,该程序创作的画作遵循科恩硬编码的一套规则。但人工智能在过去几十年中不断发展,融入了机器学习技术。结果之一就是出现了一股以不同方式使用人工智能创作艺术的新浪潮。与传统的算法艺术不同,在算法艺术中,艺术家必须事先编写详细的代码来指定所需美学的规则,而现在,艺术家可以通过机器学习查看许多图像来“学习”美学。然后,算法才会生成遵循其所学美学的新图像。这一类中使用最广泛的工具是生成对抗网络 (GAN),由 Goodfellow 于 2014 年推出 (Goodfellow 2014),已在 AI 社区的许多应用中取得成功。GAN 的发展引发了这一新的 AI 艺术浪潮。图 1 描绘了使用类似 GAN 的算法制作艺术品所涉及的创作过程。艺术家选择一组图像来输入算法 (预处理)。然后,这些图像被输入到试图模仿这些输入的生成 AI 算法中。在最后一步,艺术家筛选许多输出图像以整理最终的集合 (后期处理)。在 Artrendex,我们开发了 Playform (www.Playform.io) 作为 AI 艺术工作室,让艺术家在创作过程中使用生成 AI 系统。我们的目标是让艺术家能够使用这项技术,解决一些问题并减少艺术家面临的挑战