•设置浮点并均衡到电池制造商在77°F / 25°C下建议的值。•当输入或调整浮动电压或均衡电压时,即使电池比77°F / 25°C较温暖或较冷,Atevo前面板仪表也将显示77°F / 25°C的值。•ATEVO实际直流输出电压可能与设定点不同,如果电池温暖或较冷,大于77°F / 25°C。•使用数字仪表测量实际输出电压。•确定探针处的温度。•使用第9页的图表来验证输出电压正确。•如果电池温度降至32°F / 0°C以下,则Atevo输出电压不会进一步增加。同样,如果电池温度升高到122°F / 50°C以上,则输出电压不会进一步降低。主屏幕带有tempco选项的主屏幕其他参数出现在Atevo前面板显示主屏幕上,当正确安装tempco选项并启用了tempco选项时(“电池温度探测”设置为“ ON”)。请参阅下面的示例。
LVDT(线性可变差动变压器)是一种机电设备,其产生的电输出与单独的可移动磁芯的位移成比例。它由三个线圈组成,其中一个是变压器的初级线圈。另外两个线圈通常关于初级线圈对称,在正常运行时以相反方向串联连接以形成变压器次级线圈。当可移动变压器磁芯相对于两个次级绕组居中时,它们将具有相同幅度的感应输出电压,但极性或相位将相反。因此,次级线圈的净输出电压将为零。这个位置通常称为电气零位。当磁芯从零位移位时,一个次级线圈的输出会增加,而另一个线圈的输出会减少,从而产生与磁芯位移相关的非零差动输出电压。当磁芯从零位的一侧移动到另一侧时,该输出电压的相位会改变 180°。
摘要 - 发电机上的恒定输出电压对于产生预期的电源非常重要。发电机的输出电压的变化受各种令人不安的因素的影响,其中之一是每分钟的负载和旋转(rpm),并不总是恒定的。因此,我们需要一种特殊的调节设备来保持发电机输出电压恒定。必须克服负载变化期间电压不稳定性的问题,以保持电压恒定,以便需要设备可以控制电压稳定性。此工具是自动电压调节器(AVR)。本研究的目的是在单相轴向发生器系统中设计电压控制装置。使用的研究方法包括3个阶段,即:1)。工具的设计和设计,2)。制造工具的阶段,3)。测试工具的阶段。当内部气隙为0.4 cm,外部0.5 cm和rpm 2589的轴向发生器时,获得了研究的结果。发电机的输出电压开始显着降低,直到达到-70伏,RPM也降至-200。相比之下,当使用AVR操作发生器时,还原仅达到-30伏。但是,当发电机使用AVR操作时,RPM的减小更大,直到达到-220。
固定的1.2V输出,接近于硅的带隙电压。电流型BGR的输出电压与硅的带隙电压无关,可以根据应用需要进行调整,这也是电流型BGR仍在许多模拟集成电路中广泛使用的原因。由于电流型BGR的输出电压与硅的带隙电压无关,因此称之为电压基准(VR)更为合适。目前,VR的研究方向都与其主要性能参数有关。一是功耗,降低功耗的常用方法是采用亚阈值金属氧化物半导体场效应晶体管(MOSFET),因为亚阈值MOSFET的电流比普通MOSFET低得多,适合于低功耗设计[1-8]。另一个是输出电压的温度系数(TC),它是反映VR性能的重要参数。迄今为止,世界各地的研究人员已经提出了许多方法来提高VR的TC,以适应不同的应用。传统BGR输出电压中含有高阶非线性项,导致输出电压的温度曲线具有一定的曲率,从而决定了输出电压的温度系数。有的文献利用非线性电流来补偿输出电压中的高阶非线性项[9~14]。也有研究者将温度范围分成几部分,对每部分温度分别进行补偿,这种方法称为分段补偿[9,15]。一般来说,这种方法的补偿效果较好,但是电路结构稍复杂。针对正向偏置PN结电压的非线性特性,补偿方法有两种,一种方法是利用流过正向偏置PN结的不同TC电流来补偿曲率[10,16~20],另一种方法是通过不同的器件来补偿曲率[21,22]。以上两种方法都是利用PN结的温度特性来补偿温度曲率,比较适用于基于传统BGR电路结构的VR。亚阈值BGR在低功耗方面具有优势,但是传统BGR具有更好的工艺兼容性和更好的TC,这也是本文基于传统电流型BGR设计VR的原因。段全振等人在2015年提出了一种利用NPN BJT进行补偿的方法[21],该补偿曲率的方法简单实用,但需要NPN BJT工艺的支持,有些特定工艺无法提供NPN BJT,根据特定工艺的特点,我们利用工艺设计了一种高精度曲率补偿VR
• 精确的电源电压 • 有源噪声过滤 • 过流故障保护 • 级间隔离(解耦) • 从单个电源生成多个输出电压 • 适用于恒流源 图 1-2 显示了线性稳压器的几种典型应用。图 1-2(A) 显示了传统的交流到直流电源。在这里,线性稳压器执行纹波抑制、消除交流嗡嗡声和输出电压调节。电源输出电压将干净且恒定,与交流线电压变化无关。图 1-2(B) 使用低压差线性稳压器在电池放电时从电池提供恒定的输出电压。低压差稳压器非常适合此应用,因为它们可以延长给定电池的使用寿命。图 1-2(C) 显示配置为开关电源“后置稳压器的线性稳压器
摘要 - 我们报告了一种可生物降解的自动传感器,用于测量体内溶解的氧气。操作原理是氧还原反应与腐蚀电化学夫妇阴极的通常显性氢还原反应的竞争。由于氧还原反应对总体电化学反应的相对贡献取决于局部氧气的集中,因此这对夫妇的输出电压也取决于局部氧气浓度。通过使用层压层嵌入可生物降解的聚(乳酸)底物中,将传感器嵌入可生物降解的金属镁和钼。外部生理溶液被用作电解质。在典型的生理氧浓度范围内测量了传感器的输出电压(即,在整个腐蚀夫妇中产生的电压)是氧浓度的函数。观察到每百分比氧浓度约为6 mV的线性输出电压响应;高于此范围的氧气浓度导致传感器饱和。[2020-0192]
当 Type-C 和 Type-A 其中一个端口接入设备时, Type-C 或 Type-A 端口都可以实现独 立的快充功能。当 Type-C 和 Type-A 都接入设备时, XPD977 会将输出电压降至 5V 给设 备供电,其中 Type-C 端口 PD 只广播 5V/3A ,保留 BC1.2 以及 Apple 2.4A ,而 Type-A 端 口则只保留 Apple 2.4A 。特别的,当 Type-A 口一直连接苹果充电线但未接入苹果手机时, Type-C 口仍然有快充功能。作为充电器应用时,充电线会经常与充电器连接在一起。 XPD977 完美解决了 Type-A 和 Type-C 口连接充电线应用时的快充难题。此外, Type-A 口 充饱关断电流阈值低至 10mA ,可支持智能穿戴设备小电流充电。
< 概述 > 电容器经过仔细测试,在实际电路条件下,Vout 在 Ra=open 时为 3.3V。当将输出电压调整为 3.3V 时,元件布置和操作。在这种情况下,请连接 Ra 或以下的数量。当 RC 引脚连接到 SG 引脚时,负载电路和转换器将停止指定的陶瓷电容器数量,而当它打开时,转换器将启动设备无法减少。因此请务必安装高频操作。不使用开/关控制时,请保持 RC 引脚打开。请根据负载电路去耦陶瓷电容器,并参考有关其他功能(如调整设备说明)的其他页面。建议使用总容量为 500µF 或低于输出电压的负载电容器、远程开/关等。注意: - 对于此转换器,无法进行输出并联操作。- 请确保输入和<调整输出电压>
FSDAC 是一种半数字重建滤波器,可将噪声整形器的 1 位数据流转换为模拟输出电压。滤波器系数作为电流源实现,并在输出运算放大器的虚拟接地处相加。这样,可实现非常高的信噪比性能和低时钟抖动灵敏度。由于 DAC 固有的滤波功能,因此不需要后置滤波器。板载放大器将 FSDAC 输出电流转换为能够驱动线路输出的输出电压信号。