如今,尤其是对于便携式设备而言,低功耗是延长电池寿命的基本约束。在这种情况下,传统电路无法满足要求。需要重新设计采用较低技术的电路,使其在减少供电的情况下也能正常工作,这是设计师的主要关注点。虽然规模化技术有助于通过要求低供电来降低功耗,但同时,如果设计是模拟的,二阶效应就会变得突出。在数字中,这种影响不会使性能下降太多。在任何 IC 中,性能都由用于构建它的组件决定。如果 IC 中使用的子块消耗的功率较低,则意味着整个系统的性能会更好。对于模拟 IC,电流镜是广泛用于大多数电路的基本块之一。电流镜的理想特性包括大动态范围、宽带宽、低输入电阻和高输出电阻。然而,在纳米技术中,
最大开关电流继电器输出电阻负载上的最大开关输出R1C,COS PHI = 1:3 A在250 V AC中继输出电阻载荷上的输出R1C,电阻载荷,COS PHI = 1:3 A在30 V DC DC中继输出电感载荷上输出r1c,COS PHI = 0.4 = 0.4 = 0.4和L/R = 7 m- s:2 AT 250 V Ac cos in = 7 m- 2 a在30 V DC中继输出电阻载荷时输出R2C,COS PHI = 1:5 a在250 V AC继电器输出电阻载荷时输出R2C在电阻载荷上,COS PHI = 1:5 a在30 V DC DC中继输出电感载荷上,COS PHI = 0.4和L/R = 0.4和L/R = 7 m- s:2 AT 250 V Ac cos lage = 7 m- s:2 a cos in cos lag/c cos cos cos cos cos lay phi = 0. 2 A在30 V DC
摘要。高性能子伏电流镜被广泛用于构建混合模式低功率VLSI系统。电流镜的性能取决于其关键参数,其中包括较大的操作范围,低输入合规性电压,宽秋千,大带宽以及非常低的输入和非常高的输出电阻。在本文中,显示了高性能低功率电流镜的设计。所提出的电流镜基于电压跟随器,使电流镜在低压下工作。为改善输入输出电阻,提出的电流镜由超级晶体管和超级cascode阶段使用。在微电瓦范围内的功率耗散时,直到1mA达到了最小误差的当前镜像。所达到的带宽为2.1 GHz,低输入和高输出电阻分别为0.407 ohm和50 giga ohm。在本文中还显示了过程角,温度分析和提议的电流镜的噪声分析。使用0.18 UM技术的HSPICE以0.5 V的双电源电压进行完整分析。
NSI1311-Q1 是一款基于 NOVOSENSE 电容隔离技术的高性能隔离放大器,输出与输入分离。该器件的单端输入信号范围为 0.02V 至 2V。NSI1311-Q1 的高输入阻抗使其非常适合连接到高压电阻分压器或其他具有高输出电阻的电压信号源。该器件的固定增益为 1,并提供差分模拟输出。低失调和增益漂移确保整个温度范围内的精度。高共模瞬变抗扰度确保该器件即使在存在高功率开关(例如电机控制应用)的情况下也能提供准确可靠的测量。故障安全功能(缺少 VDD1 检测)简化了系统级设计和诊断。主要特点
注 1)总电流消耗等于待机模式下的电流消耗(Iw)加上检测期间的输出电流(Iout)。对于 1μA 类型,请注意睡眠模式下的平均电流消耗为 1μA,待机模式下的平均电流消耗为 1.9μA。另请参阅时序图。注 2)请根据 Vout 选择输出电阻(下拉概念),使输出电流低于或等于 100μA。如果输出电流超过 100μA,可能会导致误报。注 3)传感器温度必须在指定时间内保持恒定。
NSI1311 是一款基于 NOVOSENSE 电容隔离技术的高性能隔离放大器,输出与输入分离。该器件的单端输入信号范围为 0.02V 至 2V。NSI1311 的高输入阻抗使其非常适合连接到高压电阻分压器或其他具有高输出电阻的电压信号源。该器件的固定增益为 1,并提供差分模拟输出。低偏移和增益漂移确保整个温度范围内的精度。高共模瞬变抗扰度确保该器件即使在存在高功率开关(例如电机控制应用)的情况下也能提供准确可靠的测量。故障安全功能(缺少 VDD1 检测)简化了系统级设计和诊断。主要特点
第二级 第二级或中间级由 Q 16 、 Q 17 、 Q 13 B 和两个电阻器 R 8 和 R 9 组成。晶体管 Q 16 充当射极跟随器,从而使第二级具有高输入电阻。这最大限度地减少了输入级的负载并避免了增益损失。此外,添加具有 50kΩ 发射极电阻的 Q 16(类似于 Q 7 和 R 3 )可增加第一级的对称性,从而提高其 CMRR。晶体管 Q 17 充当共射极放大器,发射极中带有 100Ω 电阻。其负载由 pnp 电流源 Q 13 B 的高输出电阻与输出级的输入电阻并联组成(从 Q 23 的基极看)。使用晶体管电流源作为负载电阻(有源负载)可以获得高增益,而无需使用大电阻,因为大电阻会占用很大的芯片面积并需要很大的电源电压。
• 增益和频率调整的灵活性:由于运算放大器可以提供电压增益,有源滤波器中的输入信号不会像无源滤波器那样衰减。有源滤波器的调整或调谐非常容易。• 无负载效应:由于运算放大器的输入电阻高、输出电阻低,有源滤波器不会导致输入源或负载的加载。• 成本和尺寸:由于可以使用低成本运算放大器并且不需要电感器,有源滤波器比无源滤波器便宜。• 寄生效应:由于有源滤波器尺寸较小,因此寄生效应较少。• 数字集成:模拟滤波器和数字电路可以在同一 IC 芯片上实现。• 滤波功能:有源滤波器可以实现比无源滤波器更广泛的滤波功能。• 增益:有源滤波器可以提供增益,而无源滤波器通常会产生很大的损耗。
模块 II 6L 高频晶体管模型、单级和多级放大器的频率响应、共源共栅放大器。各种操作类别(A、B、AB、C 类等)、反馈拓扑:电压串联、电流串联、电压分流、电流分流、反馈对增益、带宽等的影响,模块 III 6L 振荡器:基本概念回顾、巴克豪森准则、RC 振荡器(相移、维恩电桥等)、LC 振荡器(Hartley、Colpitt、Clapp 等)、多谐振荡器(单稳态、非稳态和双稳态)电流镜:基本拓扑及其变体、VI 特性、输出电阻和最小可持续电压 (VON)、最大可用负载。模块 IV 10L 差分放大器:基本结构和工作原理、差分增益、共模增益、CMRR 和 ICMR 的计算。运算放大器:基本结构和特性、反相和非反相放大器
LM50/LM50-Q1 可以很好地处理电容负载。无需任何特殊预防措施,LM50/LM50-Q1 即可驱动任何电容负载。LM50/LM50-Q1 具有标称 2 k Ω 输出阻抗(如图 17 所示)。输出电阻的温度系数约为 1300 ppm/°C。考虑到此温度系数和电阻的初始公差,LM50/LM50-Q1 的输出阻抗不会超过 4 k Ω。在极其嘈杂的环境中,可能需要添加一些过滤以最大限度地减少噪声拾取。建议从 V IN 到 GND 添加 0.1 μ F 以旁路电源电压,如图 16 所示。在嘈杂的环境中,可能需要在输出到地之间添加一个电容器。具有 4 k Ω 输出阻抗的 1 μ F 输出电容器将形成 40 Hz 低通滤波器。由于 LM50/LM50-Q1 的热时间常数比 RC 形成的 25 ms 时间常数慢得多,因此 LM50/LM50-Q1 的整体响应时间不会受到显著影响。对于更大的电容器,这种额外的时间滞后将增加 LM50/LM50-Q1 的整体响应时间。