频率范围 87.5 至 108 MHz,步进为 10 kHz RF 输出阻抗 50 Ω 调制类型 F3E / F8E 直接 FM 调制方式 单声道、立体声、多路复用、SCA、AUX、AES/EBU(通过前面板选择输入) 频率偏差 ±75 kHz =100 %,±150 kHz 能力 频率生成 NCO(直接数字合成) 频率稳定性 ± 1ppm/年 RF 谐波 超过 CCIR/FCC 要求 RF 杂散 超过 CCIR/FCC 要求 预加重 平坦 /50/75μs 可选 立体声操作 CCIR 450/S2“导频音系统”
频率范围 87.5 至 108 MHz,步进为 10 kHz RF 输出阻抗 50 Ω 调制类型 F3E / F8E 直接 FM 调制方式 单声道、立体声、多路复用、SCA、AUX、AES/EBU(通过前面板选择输入) 频率偏差 ±75 kHz =100 %,±150 kHz 能力 频率生成 NCO(直接数字合成) 频率稳定性 ± 1ppm/年 RF 谐波 超过 CCIR/FCC 要求 RF 杂散 超过 CCIR/FCC 要求 预加重 平坦 /50/75μs 可选 立体声操作 CCIR 450/S2“导频音系统”
频率范围 87.5 至 108 MHz,步进为 10 kHz RF 输出阻抗 50 Ω 调制类型 F3E / F8E 直接 FM 调制方式 单声道、立体声、多路复用、SCA、AUX、AES/EBU(通过前面板选择输入) 频率偏差 ±75 kHz =100 %,±150 kHz 能力 频率生成 NCO(直接数字合成) 频率稳定性 ± 1ppm/年 RF 谐波 超过 CCIR/FCC 要求 RF 杂散 超过 CCIR/FCC 要求 预加重 平坦 /50/75μs 可选 立体声操作 CCIR 450/S2“导频音系统”
频率范围 87.5 至 108 MHz,步进为 10 kHz RF 输出阻抗 50 Ω 调制类型 F3E / F8E 直接 FM 调制方式 单声道、立体声、多路复用、SCA、AUX、AES/EBU(通过前面板选择输入) 频率偏差 ±75 kHz =100 %,±150 kHz 能力 频率生成 NCO(直接数字合成) 频率稳定性 ± 1ppm/年 RF 谐波 超过 CCIR/FCC 要求 RF 杂散 超过 CCIR/FCC 要求 预加重 平坦 /50/75μs 可选 立体声操作 CCIR 450/S2“导频音系统”
比例[1] - [2]。SCC输出阻抗与电容器值C fly和工作频率F SW的乘积成反比[3]。因此,将工作频率提高10倍或多或少地降低了具有相似因素的被动组件的足迹。但是,开关损耗增加了10倍,从而降低了功率效率。低功率 - 例如MW量表及以下 - 如图1如果保持大于90%的效率,则开关损耗限制了可实现的工作频率。由于工作频率有限,因此电容密度较高的电容器是增加功率密度(w/mm 3)[4] - [5]的替代方法。尽管如此,电容密度的增加限制为几个200 nf/mm 2 [6](深部电容器),无法保持低功率下的不可忽略的开关损失。另外的电容器和电感器,第三能量
宽带(多倍频程)LNA 采用各种架构设计,包括分布式(行波)、平衡和电阻反馈配置 [9]。电阻反馈被广泛用于实现多种 LNA 性能(工作频率范围、噪声系数、增益、增益平坦度、线性度、VSWR、功耗)之间的权衡 [9, 10]。在基于电阻反馈的可能配置中,共源共栅 LNA 不仅可以在其工作频带上提供平坦的增益和功率,还可以在同一频带内提供平坦的线性度和更高的输出阻抗(更好的宽带潜力)[11]。因此,本文介绍了基于电阻反馈配置和自偏置技术的单正电源共源共栅 LNA。
在集总元件 (LE) 配置中驱动电光调制器可实现较小的占用空间、降低功耗并提高高速性能。传统直线 LE 调制器的主要缺点是需要较高的驱动电压,这是由于其移相器较短所致。为了解决这个问题,我们引入了一种具有蛇形移相器的 Mach-Zehnder 调制器 (M-MZM),它可以在 LE 配置中驱动,同时保持光学移相器长度与行波调制器 (TW-MZM) 相同的数量级。需要考虑的设计限制是设备的光学传输时间,它限制了整体电光带宽。首先,我们回顾了与 TW-MZM 相比 LE 调制器的整体功耗改进以及带宽增强,同时还考虑了驱动器输出阻抗和线或凸块键合的寄生效应。然后,我们报告了使用标准 CMOS 兼容工艺在绝缘体上硅 (SOI) 晶片上制造的基于载流子耗尽的 M-MZM 的设计、实现和实验特性。制造的 M-MZM 具有低掺杂 (W1)、中掺杂 (W2) 和高掺杂 (W3) 结,需要 9.2 V pp、5.5 V pp 和 3.7 V pp 才能完全消光,光插入损耗分别为 5 dB、6.3 dB 和 9.1 dB。对于所有三个 M-MZM,使用 50 Ω 驱动器和终端电阻以 25 Gb/s 记录睁眼图。对于无终端电阻的 M-MZM,可以实现更高的数据速率,前提是将低输出阻抗驱动器通过引线或凸块键合到调制器上。最后,我们将 M-MZM 与 TW-MZM 的功耗进行比较,结果显示 M-MZM 在 25 Gb/s 时功耗降低了 4 倍。
BBS1C4ALP (2024) 适用于超宽带高功率线性应用;该放大器采用高功率 RF MOSFET 器件,可提供宽频率响应和动态范围、高增益、低失真和良好的线性度。采用先进的宽带 RF 匹配网络和组合技术、EMI/RFI 滤波器和所有合格组件可实现卓越的性能和高效率。该系统包括通用电压、单相、电源和内置强制风冷系统。Empower RF 的 ISO9001 质量保证计划确保一致的性能和最高的可靠性。 固态 AB 类设计 瞬时超宽带 体积小巧、重量轻 前面板手动增益调节或 LCD 控制器 适用于 CW、AM 和 FM(其他调制类型请咨询工厂) 50 欧姆输入/输出阻抗 高可靠性和坚固性 电气规格 @ 208V AC、25 ° C、50 Ω 系统
BBS0D3FOQ (2015) 适用于抗扰度测试、实验室和超宽带高功率应用。这款机架式放大器采用推挽式 MOSFET 功率器件,可提供高增益、宽动态范围、低失真和良好的线性度。通过采用先进的宽带 RF 匹配网络和组合技术、内置高质量电源、EMI/RFI 滤波器、机加工外壳和所有合格组件,实现了卓越的性能、长期可靠性和高效率。Empower RF 的 ISO9001 质量保证计划确保一致的性能和最高的可靠性。 固态 AB 类设计 瞬时超宽带 体积小巧、重量轻 标准前面板手动增益调节 适用于 CW、AM 和 FM(有关其他调制类型,请咨询工厂) 50 欧姆输入/输出阻抗 高可靠性和坚固性电气规格@ 220V AC,25°C,50 Ω 系统
BBS0D3FOQ (2015) 适用于抗扰度测试、实验室和超宽带高功率应用。这款机架式放大器采用推挽式 MOSFET 功率器件,可提供高增益、宽动态范围、低失真和良好的线性度。通过采用先进的宽带 RF 匹配网络和组合技术、内置高质量电源、EMI/RFI 滤波器、机加工外壳和所有合格组件,实现了卓越的性能、长期可靠性和高效率。Empower RF 的 ISO9001 质量保证计划确保一致的性能和最高的可靠性。 固态 AB 类设计 瞬时超宽带 体积小巧、重量轻 标准前面板手动增益调节 适用于 CW、AM 和 FM(有关其他调制类型,请咨询工厂) 50 欧姆输入/输出阻抗 高可靠性和坚固性电气规格@ 220V AC,25°C,50 Ω 系统