早在 2006 年,菲律宾政府就发布了第 488 号行政命令,以支持电动汽车 (EV) 的生产,有效降低了电动汽车零部件的关税税率,并允许电动汽车制造商以更实惠的价格进口 (Zaldarriaga,2022 年)。2008 年,东南亚首个电动吉普尼 (e-jeepneys) 商业特许经营权在菲律宾启动,标志着朝着环境可持续性迈出了重要一步。这些特许经营的电动吉普尼于 2009 年开始在马卡蒂市街头行驶,旨在遏制马尼拉大都会等城市地区传统柴油吉普尼造成的严重空气污染 (Sarmiento,2012 年)。现代化的推动力主要源于解决大城市日益严重的空气污染和交通拥堵的迫切需要。传统的吉普尼尽管是一种文化标志,但也被认为是空气污染的主要原因,因此必须转向更清洁、更高效的交通方式 (Fernandez, 2019)。
• Ackers 和 White (1973) • Engelund-Hansen (1967) • Lausen-Copeland (1989) • Meyer-Peter-Muller (1948) • Soulsby-van Rijn (1997) • Toffaleti (1968) • Van Rijn (1984ab, 2007ab) • Wilcock 和 Crowe (2003) • Wu 等 (2000) • Yang (1984)
物理系统,离子作为量子比特载体在子系统之间传递量子信息,因此离子穿梭是在多个离子限制区域内或多个子系统之间实现量子比特扩展方案的必要控制手段,由此可见离子穿梭的重要性。因此,我们制定了一种计算离子穿梭过程中分段直流电极时变电压的方法。在方法的设计中,我们不从纯理论的角度研究离子穿梭,还考虑到电子学的实际约束,使实验方法更加简洁明了。实验结果表明,该方法可以使离子按照预期的路线穿梭,说明了该方法是可行的,产生的直流电极电压是可靠的。
使用场效应晶体管 (FET) 来探索具有传输测量的原子级薄磁性半导体是困难的,因为大多数 2D 磁性半导体的极窄带会导致载流子局域化,从而阻止晶体管工作。本文表明,CrPS 4 的剥离层(一种带宽接近 1 eV 的 2D 层状反铁磁半导体)可以实现在低温下正常工作的 FET。使用这些设备,可以测量电导率作为温度和磁场的函数,以确定完整的磁相图,其中包括自旋翻转和自旋翻转相。确定了磁导率,它在很大程度上取决于栅极电压。在电子传导阈值附近达到高达 5000% 的值。尽管研究中使用的 CrPS 4 多层厚度相对较大,但栅极电压还可以调整磁态。结果表明,需要采用具有足够大带宽的二维磁性半导体来实现正常运行的晶体管,并确定一种候选材料来实现完全栅极可调的半金属导体。
二维拓扑绝缘体又称量子自旋霍尔绝缘体,具有受拓扑结构保护的边缘态[1]。由于该通道可支持无耗散电子传输,有望实现下一代低损耗电子器件,得到了广泛的研究[2−4]。自2006年起,斯坦福大学Zhang团队预言在HgTe/CdTe量子阱中存在量子自旋霍尔效应(量子自旋霍尔效应,QSH)[5]。次年,维尔茨堡大学物理研究所Molenkamp团队的实验证实了这一点[6]。研究人员进行了大量的理论预测和实验探索,以寻找更加实用的天然QSH材料[7−9]。与复杂量子阱结构相比,天然QSH材料在样品制备和异质结器件构筑方面更具有优势。但在天然单层二维体系中实现QSH效应仍然十分困难,自上而下的机械剥离法和自下而上的外延生长法是成功制备单层QSH材料的两种常用方法。
AR 600-81 • 第一年接触点 • 年度 IDP 更新 • 年度 IDP 更新 • 年度 IDP 更新 • 年度 IDP 更新 • 年度 IDP 更新 • 年度 IDP 更新 • 年度预算更新 • 年度预算更新 • 年度预算更新 • 年度预算更新 • 年度预算更新 • 年度预算更新服务阶段 • 重新入伍接触点 • 重新入伍接触点 • 重新入伍接触点 1+ 年 • MOS 交叉检验 • MOS 交叉检验 • MOS 交叉检验 • GAP 分析 • GAP 分析 • GAP 分析 • 自我评估 • 自我评估 • 自我评估
摘要。由于无序量子点的强轨道量子化,在标准 p 型硅晶体管中可以实现单空穴传输和自旋检测。通过使用充当伪栅极的阱,我们发现了表现出泡利自旋阻塞的双量子点系统的形成,并研究了漏电流的磁场依赖性。这使得可以确定空穴自旋状态控制的关键属性,其中我们计算出隧道耦合 tc 为 57 µ eV,短自旋轨道长度 l SO 为 250 nm。使用无序量子点时,界面处表现出的强自旋轨道相互作用支持电场介导控制。这些结果进一步激励我们,可以使用易于扩展的平台(例如行业标准硅技术)来研究对量子信息处理有用的相互作用。