简介 地貌学涉及地形和地形变化的描述和测量。地貌理论的测试和过程建模越来越需要各种尺度的高分辨率地形和地形变化定量数据。摄影测量已被用作各种地貌应用中的地形信息来源(Welch 和 Jordan,1983 年;Collin 和 Chisholm,1991 年),但分析摄影测量和最近的数字摄影测量的出现为摄影测量在获取地貌数据方面开辟了新的应用(Lane 等人,1993 年;Fryer 等人,1994 年;Brunsden 和 Chandler,1996 年;Dixon 等人,1996 年)。与地面测量相比,摄影测量的主要优势在于它能够从照片中获取高空间分辨率的连续数据,从而提供地形的永久记录。在需要对快速变化的形式进行详细调查的情况下,这变得更加有利。以前将分析摄影测量应用于地形变化包括研究斜坡形态和稳定性。倾斜航空照片已用于监测离散点的斜坡不稳定性(Fraser,1983 年)并获取用于描述斜坡形态的地形数据(Chandler 等人,1987 年;Chandler 和 Moore,1989 年)并量化随时间的变化(Chandler 和 Brunsden,1995 年)。
您的学生(上述学生)需要使用手机操作血糖监测系统来管理 1 型糖尿病。血糖水平从他们佩戴的传感器传输到手机上的血糖监测应用程序。此应用程序会提醒学生血糖水平出现任何问题。如果学生佩戴了胰岛素泵,胰岛素泵将使用此应用程序中的信息根据学生的需求调整胰岛素输送率。
本报告介绍了为 ITER 国际项目提供等离子体破坏缓解的候选系统的初步故障模式和影响分析 (FMEA) 结果。该候选系统是大型气体注入系统,注入氦、氖、氩和氘的混合物,以保护第一壁和/或高热通量组件免受等离子体控制丧失事件或等离子体重大扰动造成的损坏。中央联锁系统触发中断缓解系统 (DMS),其功能是终止等离子体 (SRD,2013)。等离子体破坏缓解对于 ITER 来说是强制性的,以减少真空容器上的晕电流和涡流力,减轻热负荷并避免或减轻失控电子 (Lehnen,2011)。使用混合气体可实现氦气过去气体粒子输送率的优势以及氩气较大的辐射吸收能力 (Bakhtiari, 2011)。
摘要:在城市交叉点中,自动驾驶汽车(AV)的感觉能力通常受到视觉障碍的阻碍,对其稳健且安全的操作构成了重大挑战。本文介绍了一项实施研究,旨在在城市交叉点被遮挡的情况下,在情况下增强连接的自动化车辆(CAVS)的安全性和鲁棒性。为路边传感建立了一种新颖的LIDAR基础设施系统,并结合Baidu Apollo的自动驾驶系统(ADS)和Cohda Wireless V2X通信硬件,并建立了一个集成平台,以增强自主驱动的路边知觉。现场测试是在新加坡Cetran(自动驾驶汽车测试和研究卓越中心 - NTU)自动驾驶测试轨道上进行的,并遵守SAE J2735 V2X通信标准。沟通延迟和数据包输送率分析为评估指标。测试结果表明,该系统可以帮助CAV在城市阻塞的情况下提前检测障碍。
可植入电泳药物输送装置已显示出广泛的应用前景,从治疗癫痫和癌症等病症到调节植物生理。施加电压后,该装置通过电泳将带电药物分子穿过离子传导膜输送到局部植入区域。这种无溶剂流动的“干”输送方式能够控制药物释放,同时将出口处的压力增加降至最低。然而,这些装置面临的一个主要挑战是限制其空闲状态下的药物泄漏。本文介绍了一种通过选择药物共离子来减少被动药物泄漏的方法。通过将乙酰胆碱的相关共离子从氯离子转换为羧酸盐共离子以及基于磺丙基丙烯酸酯的多阴离子,稳态药物泄漏率可降低多达七倍,而对主动药物输送率的影响却微乎其微。数值模拟进一步说明了这种方法的潜力,并为抑制电泳药物输送装置中被动药物泄漏的新材料系统提供了指导。
摘要。在无线传感器网络(WSN)中,通常由具有资源限制的节点组成,利用效率的流程对于增强网络寿命以及因此,在超密集和异质环境中的可持续性(例如智能城市)至关重要。特别是平衡在这种动态环境中有效传输数据所需的能量,这对降低数据冗余性的交易构成了重大挑战,这是降低数据冗余性的交易,同时实现可接受的交付率是一个基本的研究主题。通过这种方式,这项工作提出了一种新的能源感知的流行病协议,该协议使用网络能量的当前状态来通过自我调整每个节点转发行为自我调整为渴望或懒惰的局部残留电池来创建动态分布拓扑。模拟的评估证明了其在能耗,输送率和计算负担下的效率与经典八卦协议以及定向协议相比。
无线传感器网络(WSN)到目前为止遇到了许多问题,因为它们开放,适应性且资源有限。这些问题包括隐私,有效性和能源消费。敏感信息应始终在无线网络上谨慎传输,因为这些网络上的公共通信有时是不可靠的。尽管层次路由方法可能处理许多应用程序,但是集群头(CH)选择和网络过载分布存在困难问题。在这项工作中引入了安全的低能自适应聚类层次结构(SLEACH)协议密码N-RSA方法(SLEACH-N-RSA),以改善网络寿命,降低能源消耗并确保高安全性。SLEACH-N-RSA协议的第一步是使用改进的Leach协议,该协议基于设置阈值函数值的估计剩余能量(ERE)和耗尽的能量(DE),以决定谁将是CH以及群集将如何形成。在第二步中,建议的N-RSA加密算法已用于确保传输数据的机密性。与其他当前使用的协议相比,在网络寿命,数据包输送率,能源消耗和执行时间方面,提出的SLEACH-N-RSA协议的性能分析显示出更好的性能结果。实验结果表明,所提出的协议优于其他现有协议。
摘要:随着海洋可再生资源开始成为可行的能源,研究流体动力学和形态动力学过程对近岸的影响变得至关重要。作为在 T ELEMAC-3D 和 S ISYPHE 模块的数值建模环境中实施涡轮机的一部分,我们进行了为期 10 年的运行,以评估涡轮机对流动的近岸影响。我们使用了五个标准来定义可行的位置。涡轮机位置被添加到与流体动力学模型耦合的转换能量模型中,以便正确开发能量转换过程中的流动变化。结果表明,在三个选定地点,涡轮机并没有平等地转换场地内的电流能量。事实上,位于农场外侧的涡轮机产生了更高的转换率。这对近岸产生了以下影响:(1) 洋流强度的降低导致水柱发生强烈调整,打破了垂直环流的自然模式;(2) 横向流动的发展随着时间的推移影响底部动力学并导致沉积物沉积的变化; (3)由于流动的发散,涡轮机场周围的推移质输送率增加。理想化的涡轮机场在 10 年内生产了 1,775 吉瓦时的电力,在此期间可以为 54,181 户居民提供电力。
抽象的微流体技术促进了对流体混合和组件之间相互作用的精确控制,包括自组装和降水。它为准确制造颗粒提供了新的选择,并具有推进微/纳米颗粒药物输送系统(DDSS)的重要潜力。已经探索了各种微通道/微流体芯片以构建微/纳米颗粒DDS。通过微流体技术对粒径,形态,结构,刚度,表面特征和弹性的精确操纵依赖于特定的微通道几何设计以及外源能量的应用,并依赖于流体运动的原理。因此,这可以对关键质量属性(CQA)(例如粒径和分布,封装,效率,药物负荷,体外和体内药物输送率,ZETA电位和靶向功能),用于微型/纳米型ddss。在这篇综述中,我们对微流体技术进行了分类,并探讨了过去5年(2018 - 2023年)的新型微通道结构的最新研究发展及其在微型/纳米型DDS中的应用。此外,我们阐明了微流体技术的最新操纵策略,这些技术影响了与微/纳米/纳米细胞DDSS CQA相关的基础结构。此外,我们还提供了有关新型微/纳米颗粒DDS的背景下微流体技术所面临的工业应用和挑战。