已通过肠内途径(包括颗粒,片剂和胶囊)以及通过肠胃外路线(例如静脉内,动脉内,肌肉内和皮下递送)进行了各种药物输送系统。这些药物输送系统有几个缺点,包括首次代谢的可能性,可以降低药物的生物利用度,以及在施用期间的不适或疼痛的可能性[1]。为了解决限制立即释放制剂的约束,已经创建了一系列新型的药物输送系统,例如微球,微孔,纳米颗粒,纳米属粒子和水凝胶[2]。纳米纤维是非常薄的纤维,直径在1到1000纳米之间,由聚合物产生。通过使用聚合纤维和实施受控释放的给药途径,可以每天或两次使用药物,从而改善患者的依从性并避免有毒等离子体峰
摘要:近几十年来,对疗效显著、副作用较小的肿瘤治疗的研究得到了广泛的开展,不同剂型的药物受到了广泛的关注,但其全身生物分布存在疗效和安全性问题。肿瘤内给药因其在肿瘤内富集和滞留性好,有望克服这些问题,从而减少副作用。将水凝胶、纳米颗粒、微针和微球等药物载体直接输送到肿瘤,不仅可以实现肿瘤的靶向治疗,而且副作用小。此外,肿瘤内给药已与化疗、增强放疗、免疫治疗、光疗、磁流体热疗和多模态治疗等治疗策略相结合,其中一些策略正在进行临床试验或已应用于临床。然而,肿瘤胶原纤维阻碍药物渗透,高密度高压挤出药物,肿瘤内注射技术不成熟等诸多障碍阻碍了肿瘤内给药成为一种理想且广泛应用的选择。在本综述中,我们系统地讨论了不同药物载体的肿瘤内输送以及肿瘤内治疗策略的当前发展。关键词:肿瘤内给药,药物载体,治疗策略,抗肿瘤治疗
Malia Zee 1 、Angela C. Davis 1 、Andrew D. Clark 1 、Tateh Wu 1 、Stephen P. Jones 1 、Lindsay L. Waite 1 、Joshua J. Cummins 1 、Nels A. Olson 1,* 。
摘要:尽管人们对基因疗法有着极大的兴趣,但核酸的系统递送仍然面临巨大的挑战。要成功施用核酸,一种方法是将它们封装在脂质纳米颗粒 (LNP) 中。然而,静脉内施用的 LNP 大量积聚在肝脏中,并被网状内皮系统 (RES) 吸收。在这里,我们在 LNP 之前施用一种旨在暂时占据肝细胞的脂质体,即纳米引物。这项研究表明,用纳米引物预处理小鼠会降低 RES 对 LNP 的吸收。通过在肝细胞中快速积累,纳米引物提高了包裹人促红细胞生成素 (hEPO) mRNA 或因子 VII (FVII) siRNA 的 LNP 的生物利用度,分别导致更多的 hEPO 产生(增加 32%)或 FVII 沉默(增加 49%)。纳米引物的使用为改善 RNA 疗法的系统输送提供了一种新策略。关键词:mRNA、siRNA、脂质纳米颗粒、纳米载体、核酸疗法、纳米引物、Kup 细胞
纳米载体是一种纳米尺寸的递送囊泡,可以将所需分子运送到特定位置。利用纳米载体进行靶向药物递送是一个新兴领域,旨在解决自由药物递送的某些缺点,包括药物过早降解、非特异性毒性、缺乏组织渗透、不良副作用和多种药物耐药性。纳米载体方法已被证明在这方面是有效的,市场上有一些经 FDA 批准的纳米载体系统。从这个角度来看,我们研究了碳纳米洋葱 (CNO) 作为药物递送纳米载体的潜力。概述了设计纳米载体的各种标准和考虑因素,并彻底讨论了 CNO 如何符合这些标准。鉴于人们对 CNO 的兴趣迅速增长,这一观点为使用这种新型碳纳米材料作为药物递送的潜在纳米载体提供了基础讨论。
摘要:囊泡是一种囊泡纳米载体,在临床实践中用于增强各种药物的治疗效果。囊泡由双层疏水膜包围着一个充满水相的中央腔体组成,因此,它们可以封装和递送疏水和亲水物质。与脂质体等其他双层结构相比,囊泡纳米载体更受欢迎,因为它们具有化学稳定性、生物降解性、生物相容性、低生产成本、低毒性以及易于储存和处理等特点。此外,可以通过加入配体或刺激敏感片段轻松修改囊泡膜,以实现封装货物的靶向递送和触发释放。这篇小型综述概述了设计功能性囊泡的最新进展及其作为开发先进药物和基因递送系统的平台的用途。
基于水凝胶的药物输送系统 (DDS) 克服了传统疗法的局限性,例如生物利用度低、给药频繁和侵入性,为治疗眼部疾病提供了有希望的替代方案。水凝胶具有高生物相容性和对外部刺激作出反应的能力,可以提供持续和有针对性的药物输送。本综述重点介绍了水凝胶的独特性质,包括其膨胀行为、孔隙率和机械强度,使其适用于各种眼部应用。本文讨论了基于交联方法、来源和刺激响应性的水凝胶分类,强调了它们在干眼症 (DED)、青光眼、角膜碱烧伤和新生血管药物输送方面的潜力。值得注意的进展包括热敏和 pH 响应水凝胶,它们在临床前研究中显示出有希望的结果。尽管取得了这些进展,但大多数研究仍处于临床前阶段,凸显了需要进行严格的人体试验来验证水凝胶 DDS 的安全性和有效性。研究人员、药理学家和眼科医生之间的合作努力对于将这些创新转化为临床实践至关重要,最终改善眼部疾病管理的患者结果。
纳米技术的开发和应用在医疗ELD方面取得了显着进步。各种纳米尺度的构建块为诊断和治疗疾病提供了替代的输送选项。1 - 4食品药物管理局(FDA)已批准了几种纳米载体,用于癌症或其他疾病的临床成像和治疗,例如脂质体和基于脂质的纳米颗粒,蛋白质纳米颗粒,聚合物胶束,无机纳米颗粒等。5 - 8然而,大多数纳米载体被困在临床前研究中,原因有很多:批处理综合,生物相容性问题,缺乏合适的靶向选择部位,尤其是潜在的免疫毒性。9,10理想的纳米载体应具有出色的生物相容性,效果和靶向能力。由于基于脂蛋白的天然纳米颗粒可以满足这些要求,因此这是纳米医学的一个有希望的方向。11
纳米载体在药物输送领域表现出了巨大的希望,并且在过去几十年中进行了广泛的研究。在DOST-ITDI,其材料科学纳米技术专家探索了来自土著纳米材料的多孔无机纳米载体的潜力,可用于药物递送系统,尤其是对于抗炎药。
30 多年来,通过皮肤和透皮给药途径输送药物的无痛、非侵入性方法得到了广泛的应用,因为它降低了口服或注射可能引起的药物过量风险。为了了解这种药物输送途径的特殊性,我们将简要回顾一下皮肤,包括其结构和影响药物扩散到皮肤中的参数,然后讨论改善皮肤药物输送的策略。在用于局部皮肤和透皮应用的众多现有系统中,本综述将重点介绍由水凝胶制成的药物输送系统的突破。具体来说,我们将首先介绍使用水凝胶作为创新药物输送载体来携带活性成分并穿透皮肤屏障。我们将讨论水凝胶的结构和改善药物输送所需掌握的物理化学参数,以及水凝胶的药物包封和释放目的。在最后一部分,我们将回顾水凝胶作为药物形式与其他载体(如乳液、脂质纳米颗粒、囊泡、胶囊和聚合物或无机纳米颗粒)的用途,适用于增强皮肤渗透和保护药物,以及可能限制其使用的副作用。