国防部 (DoD) 根据《综合环境反应、补偿和责任法案》(CERCLA) 和国防环境恢复计划 (DERP) 开展清理工作。我们的目标是以基于风险、财政健全的方式保护人类健康和环境。本备忘录根据美国环境保护署 (EPA) 的最新信息,为调查全氟辛烷磺酸盐 (PFOS)、全氟辛酸 (PFOA)、全氟丁烷磺酸 (PFBS)、全氟壬酸 (PFNA)、全氟己烷磺酸盐 (PFHxS) 和六氟环氧丙烷二聚酸 (HFPO-DA 或 GenX) 提供了明确的技术指导。本指导适用于调查由环境恢复账户资助、基地调整和关闭账户资助以及联邦空军和陆军警卫队运营和维护账户资助的场地的这些化学品。
Co-author, “Assessing CaMPARI as new approach methodology for evaluating Neurotoxicity,” NeuroToxicology, 97, 109-119 (2023) Co-author, “Environmentally relevant uptake, elimination, and metabolic changes following early embryonic exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in zebrafish,” Chemosphere , 310,136723(2023)共同作者,“ AHR信号的适当调节对于在胚胎鱼脑中建立神经连通性和少突胶质细胞前体细胞的发育是必要的,分子神经科学的边界,15,1032302(1032302)(2022)的共同构造,对神经的调节型,并施加了对神经的范围,并促进了神经元素的范围。到全氟辛烷,” Biorxiv,2022-09(2022)共同作者,“ 2、3、7、8-四氯二苯并 - dioxin破坏了内脏和眼脉管造成的发展”
一般历史 作为一种新兴的化学品,PFAS 化合物是相对较新的。这些化合物是在 20 世纪 30 年代发现的,制造始于 20 世纪 40 年代。PFAS 的常见子集化学品是全氟辛酸 (PFOA) 和全氟辛烷磺酸盐 (PFOS)。PFAS 目前用作许多消费品的涂层,例如地毯上的防污涂层、炊具上的不粘涂层、披萨盒和微波爆米花袋。由于行业和监管机构担心 PFOA 和长链 PFAS 对人类健康和环境的影响,美国开始逐步淘汰某些长链 PFAS。其中包括对其持久性、在环境和普通人群血液中的存在、在人体内的长半衰期以及对实验动物的发育和其他不利影响的担忧。2000 年 5 月,3M 宣布自愿逐步淘汰八种碳基化学品。这一淘汰计划于 2002 年完成。
1.4 3M公司两次(第一次是在2000年,第二次是在2022年)引领行业退出PFAS的生产。2000年,3M公司宣布将逐步停止生产全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)(最受关注的PFAS类型)。因此,3M公司大约20年来没有生产过水成膜泡沫(AFFF)。两年前,3M公司再次引领行业,宣布退出所有PFAS的生产。该公司宣布将在2025年底前停止生产,并按计划完成。该公司还宣布将努力停止在其产品组合中使用 PFAS。与 3M 公司业界领先的决策相反,其他 PFAS 制造商在 2000 年选择不退出 PFOA 和 PFOS 市场,并继续生产其他类型的 PFAS 以满足市场对这些产品的需求,包括澳大利亚。
空军完成了位于南达科他州苏福尔斯地区机场的乔福斯空军国民警卫队基地 (ANGB) 的相对风险场地评估 (RRSE),以支持环境修复工作的排序。当本公告中使用“空军”一词时,它包括空军国民警卫队。RRSE 流程用于评估环境修复场地相对于其他场地造成的相对风险。在 RRSE 过程中,将评估《综合环境反应、补偿和责任法案》(CERCLA) 中的修复场地,以便对场地进行排序,以便将来进行补救调查。由于发现了全氟和多氟烷基物质 (PFAS),包括全氟辛烷磺酸 (PFOS)、全氟辛酸 (PFOA) 和全氟丁烷磺酸 (PFBS),因此已针对该设施的场地完成了 RRSE。相对风险不是确定环境恢复工作顺序的唯一因素,但它是优先级设定过程中的一个重要考虑因素。
可持续航空燃料(SAF)将显着影响航空部门的全球变暖,并且重要的SAF目标正在出现。异丙醇是有希望的SAF化合物DMCO(1,4-二甲基甲基氯辛烷)的先驱,并且已在几种工程的微生物中产生。 最近,假单胞菌Putida成为异丙肾生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物量的未来寄主,因为它可以利用廉价的植物生物量。 在这里,我们设计了代谢通用的宿主P. putida来生产异丙醇。 我们采用两种计算建模方法(双光线优化和约束最小切割组)来预测基因敲除靶标并优化P. p. putida中的“ IPP-Bypass”途径,以最大程度地提高异源醇的产生。 Alto gether,在喂养批处理条件下,以3.5 g/L的速度获得了p. p. p. p. p. p.的最高生产滴度。 用于高级生物燃料生产的P. Putida上计算建模和应变工程的这种组合在实现可以使用可再生碳流的生物生产过程中具有至关重要的意义。异丙醇是有希望的SAF化合物DMCO(1,4-二甲基甲基氯辛烷)的先驱,并且已在几种工程的微生物中产生。最近,假单胞菌Putida成为异丙肾生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物量的未来寄主,因为它可以利用廉价的植物生物量。在这里,我们设计了代谢通用的宿主P. putida来生产异丙醇。我们采用两种计算建模方法(双光线优化和约束最小切割组)来预测基因敲除靶标并优化P. p. putida中的“ IPP-Bypass”途径,以最大程度地提高异源醇的产生。Alto gether,在喂养批处理条件下,以3.5 g/L的速度获得了p. p. p. p. p. p.的最高生产滴度。用于高级生物燃料生产的P. Putida上计算建模和应变工程的这种组合在实现可以使用可再生碳流的生物生产过程中具有至关重要的意义。
药物化合物已成为废水中越来越重要的污染物来源,因为它是传统的处理方法无效地去除它们的方法,因此它们通常被放入环境中。可以使用液体液体提取成功去除药物,并且可以使用宇宙RS预测相互作用并识别最有前途的溶剂。但是,COSMO热模型无法解释关键过程参数,从而降低了这些计算模型的准确性。因此,需要替代计算方法来准确预测可以纳入处理和相互作用变量的药物的提取产率。这项工作使用机器学习来预测使用八种溶剂的11种药物的提取产率。探索了六个回归模型和两个分类模型。使用ANN回归器(测试MAE:4.510,测试R 2:0.884)和RF分类器(测试精度:0.938,测试召回:0.974)获得了最佳性能。RF回归分析和分类还显示了关键的提取产率特征:溶剂与喂养比,N - 辛烷 - 水分系数,氢键,氢键和范德华对多余的焓的贡献,以及pH距离至最近的PKA。机器学习显示为筛选和选择最有希望的溶剂和过程条件的绝佳工具,以从废水中去除药物。
摘要:背景。全氟烷基物质(PFAS)与动物的神经发育毒性有关。但是,人类研究尚无定论。目标。评估儿童期间PFAS暴露与神经心理学发展之间的关联。方法。分析了西班牙INMA项目的1,240个母子对。全氟己烷磺酸(PFHXS),全氟辛酸(PFOA),全氟辛烷磺酸盐(PFOS)和全氟烯烷酸(PFO)和全氟烷酸(PFNA)。在14个月,4-5年和7年中评估了神经心理学发展,涵盖了四个领域:一般认知,通用运动,注意力和工作记忆。关联。结果。PFHXS,PFOA,PFO和PFNA中位数为:0.6、2.4、6.1和0.7 ng/ml。PFA较高的PFA产前暴露与14个月时的运动发育较差有关,尤其是在PFHXS(β[95%CI]:-1.49 [-2.73,−0.24])和PFOS较小程度上(-1.25 [-2.62,0.12])。在4 - 5年的一般认知发展与PFO(1.17 [-0.10,2.43])和PFNA(0.99 [-0.13,2.12])之间也存在边际正相关。没有发现其他神经心理学结果或任何性别差异的明确关联。讨论。这项研究没有显示出儿童产前PFA与不良神经心理学发展之间关联的明确证据
ML7.a “生物制剂”或放射性物质,经选择或改造,可提高其对人类或动物造成伤害、损坏设备或破坏农作物或环境的效力。ML7.e 为军事用途而专门设计或改造的设备、为传播上述任何 ML7 条目而设计或改造的设备,以及为其专门设计的部件。ML8 “高能材料”和相关物质,已“分类”。ML8.a.4 CL-20(HNIW 或六硝基六氮杂异伍兹烷)(CAS 135285-90-4)。ML8.a.13.a HMX(环四亚甲基四硝胺、八氢-1,3,5,7-四硝基-1,3,5,7-四嗪、1,3,5,7-四硝基-1,3,5,7-四氮杂环辛烷、奥克托今或奥克托今)(CAS 2691-41-0)。ML8.a.21.a RDX(环三亚甲基三硝胺、cyclonite、T4、六氢-1,3,5-三硝基-1,3,5-三嗪、1,3,5-三硝基-1,3,5-三氮杂环己烷、黑索今或黑索今)(CAS 121-82-4)。ML8.b.5 复合和复合改性双基推进剂。ML8.c.3 硼烷。ML8.c.10 液态高能量密度燃料。ML8.c.5.a.1 铍(CAS 7440-41-7),颗粒大小小于 60 µm。ML8.c.7 与粉末金属或其他高能量燃料成分复合的高氯酸盐、氯酸盐和铬酸盐。ML8.c.11.b 镁、聚四氟乙烯 (PTFE) 和偏二氟乙烯-六氟丙烯共聚物(例如 MTV)的混合物。ML8.d 以下氧化剂及其“混合物”:
宾夕法尼亚州霍舍姆海军设施工程系统司令部基地调整和关闭办公室 (NAVFAC BRAC PMO) 与美国环境保护署和宾夕法尼亚州环境保护部合作,邀请公众就工程评估/成本分析 (EE/CA) 发表意见,该分析旨在提出一项清除行动,解决前海军航空站联合预备基地 (NASJRB) Willow Grove 受全氟和多氟烷基物质 (PFAS) 影响的地下水问题。EE/CA 介绍了对处理流程、建筑替代方案、系统排放选项和首选替代方案的评估,专门用于解决 680 号建筑和 5 号场地 - 消防训练区附近地下水中的 PFAS,是根据《综合环境反应、赔偿和责任法案》(CERCLA)(也称为超级基金)制定的。清除行动的目的是通过抽取全氟辛酸 (PFOA) 和/或全氟辛烷磺酸 (PFOS) 浓度最高的地下水,减少 680 号建筑和 5 号场地(消防训练区)附近基地地下水中的 PFAS 含量。社区意见是前 NASJRB Willow Grove 清除行动替代方案选择过程不可或缺的一部分。鼓励公众审查和评论此 EE/CA。公众可以通过将书面意见发送到以下地址或通过电子邮件发送评论。