图分类对于许多与图数据相关的实际应用(例如化学药物分析和社交网络挖掘)至关重要。传统方法通常需要特征工程来提取有助于区分不同类别的图的图特征。尽管最近提出了基于深度学习的图嵌入方法来自动学习图特征,但它们大多使用从图中提取的一些顶点排列进行特征学习,这可能会丢失一些结构信息。在这项工作中,我们提出了一种新的基于模体注意力图卷积神经网络用于图分类,它可以学习更有辨别力和更丰富的图特征。具体而言,我们开发了一种模体匹配引导的子图规范化方法来更好地保留空间信息。我们还提出了一种新的子图级自注意网络来捕捉不同子图的不同影响或权重。在生物信息学和社交网络数据集上的实验结果表明,与传统图核方法和最近的深度学习方法相比,所提出的模型显著提高了图分类性能。
1 成绩:弱势学生的平均成绩较低,而且在学校的进步通常比同龄人要少。同一 KS2 等级的学生优等生的成绩低于非学生优等生。2 出勤率:学生优等生的出勤率低于非学生优等生。我们的目标是让所有学生在整个学年中的出勤率至少达到 96%。进步和成绩与结果明确挂钩。3 提高志向:弱势学生无法负担参与可以进一步参与社区活动或体验课堂以外活动的费用。4 家长参与/沟通:一些家长/监护人必须重新与学校接触并寻求支持。他们需要指导和支持,以帮助孩子做出正确的决定并参与有助于他们进步和取得成就的活动。有些家长不参与学校交流,这导致错失机会。我们的交流需要有意义且有目的性。 5 态度:所有学生必须有共同的习惯、常规和高期望,这将使学生对学校和社区产生自豪感。弱势学生也需要有常规和高期望。6 学生需求:必须通过基于辨别力的响应式教学来满足所有学生的需求。高质量的 CPD 将增强教职员工的信心,并使他们具备了解学生的技能。
•缅甸的经济轨迹在各种政府政权上发生了变化,从社会主义到民主制度,从计划到市场经济结构过渡。•连续政府实施的经济政策通常缺乏连贯性,并具有针对短期解决方案而不是解决潜在问题的临时措施。•自1989年以来的决策者一直努力指导缅甸以市场为导向的经济,其特征是可以称为“缅甸/缅甸上市经济方式”,其中包括重大限制和控制。•由军事支持的工会团结发展党(USDP)和民主领导的国家民主联盟(NLD)政府都做出了巨大的努力,以增强自由化和加强市场经济原则,尽管多维挑战,包括多种挑战,包括对过去的国内经验的政策制定和超级依赖的能力,而不是国际课程。•所有这些改革和经济支柱是通过智力和努力来确保自由化和市场经济建立的,在2021年2月1日的军事政变后,国家行政委员会制度崩溃了。•有效的政策制定和实施对于缅甸的经济轨迹至关重要,决策者必须通过辨别力来浏览历史实践和全球标准,促进政策,以促进透明度,问责制和包容性,同时适应反馈和相互联系的经济现实。
先前的行人重新识别 (Re-ID) 模型旨在关注图像中最具辨别力的区域,而当由于相机视点变化或遮挡导致该区域缺失时,其性能可能会受到影响。为了解决这个问题,我们提出了一种名为分层双向特征感知网络 (HBFP-Net) 的新模型来关联多级信息并相互加强。首先,通过低秩双线性池化建模跨级特征对的相关图。然后,基于相关图,采用双向特征感知 (BFP) 模块来丰富高级特征的注意区域,并学习低级特征中的抽象和特定信息。然后,我们提出了一种新颖的端到端分层网络,该网络集成了多级增强特征,并将增强的低级和中级特征输入到后续层以重新训练新的强大网络。更重要的是,我们提出了一种新的可训练广义池化,它可以动态选择特征图中所有位置的任意值进行激活。在包括 Market-1501、CUHK03 和 DukeMTMC-ReID 在内的主流评估数据集上进行的大量实验表明,我们的方法优于最近的 SOTA Re-ID 模型。
人工智能方法正在不断进步,在游戏相关任务(例如国际象棋)上超越人类。下一阶段预计将是人机协作;然而,关于这一主题的研究好坏参半,需要更多的数据点。我们通过研究人机协作在常见的管理教育任务上的表现,为这一新兴文献增添了新内容。教育是与人工智能相关的一个特殊领域,在实践中采用人工智能方法的速度很慢,因为担心教育事业失去人文关怀,而且由于对个人职业和发展轨迹的影响,对质量标准提出了要求。在这项研究(N = 22)中,我们设计了一个实验来探索人机协作对使用美国共同核心分类法中的技能标记教育内容任务的影响。我们的结果表明,与未使用 AI 的对照组相比,实验组(使用 AI 建议)在执行标记任务时节省了大约 50% 的时间(p << 0.01),但牺牲了 7.7% 的召回率(p = 0.267)和 35% 的准确率(p= 0.1170),AI+人类组介于单独使用 AI(性能最低)和单独使用人类(性能最高)之间。我们进一步分析了这项 AI 协作实验的日志数据,以探索在什么情况下人类在接受建议时仍会行使他们的辨别力。最后,我们概述了这项研究如何帮助在教育领域实施 ChatGPT 等 AI 工具。
测量瞬时功能连接是脑电图 (EEG) 研究中的一个重要挑战。在这里,高时间分辨率所提供的关于大脑活动的深刻、有辨别力的信息的丰富潜力,被介质的固有噪声和在短时间窗口内计算出的相关性的虚假性质所掩盖。我们提出了一种克服这些问题的方法,称为滤波平均短期 (FAST) 功能连接。首先,对于给定的一对视觉短期记忆 (VSTM) 任务,对整个研究队列的长期、稳定的功能连接进行平均。得到的平均连接矩阵包含有关任务最强一般连接的信息,用作过滤器来分析各个受试者的瞬时高时间分辨率功能连接。在模拟中,我们表明,这种方法可以准确区分两种条件下嘈杂事件相关电位 (ERP) 的差异,而标准连接和其他类似方法则无法做到这一点。然后,我们将其应用于分析与家族性和散发性阿尔茨海默病 (AD) 相关轻度认知障碍 (MCI) 的两组人群中视觉短期记忆绑定缺陷相关的活动。在 P300 ERP 范围内,绑定任务中发现了可重复的显著差异,而在形状任务中没有显著差异。这允许对瞬时功能连接进行新的敏感测量,可以实施以获得具有临床意义的结果。
一名 58 岁的男子,有 31 个月的病史,他曾看到别人的脸部扭曲,用他的话来说,看起来像“恶魔”。他来我们实验室进行评估。患者表示,他遇到的每个人脸上都有这种扭曲——面部特征严重拉伸,前额、脸颊和下巴有深深的凹槽,但他报告说,在看房子或汽车等物体时没有扭曲。患者说,即使脸部扭曲,他仍然能够认出他们是谁。值得注意的是,他报告说,在屏幕或纸上查看面部图像时没有扭曲。扭曲并没有伴随对他遇到的人(例如他的家人或朋友)身份的妄想信念。患者有双相情感障碍和创伤后应激障碍病史。此外,他在 43 岁时头部严重受伤,导致住院治疗。他在 55 岁时还可能曾一氧化碳中毒,这发生在他出现扭曲症状的 4 个月前。医生没有给他开任何药物。他自称没有使用过任何违禁物质。初步评估显示,患者身体状况良好,没有痛苦;他有些轻微的腰背部不适。他说,扭曲最初让他非常痛苦,但他已经习惯了。神经心理学测试表明,一般认知功能没有明显异常;简易精神状态检查评分为 30/30。他没有视力缺陷(双眼 10/10)或色觉缺陷(Ishira 板:25/25;Farnsworth-Munsell 100 色相测试:平均辨别力)。基于计算机的面部感知测试表明,他有面部身份识别轻度障碍,但面部表情识别正常。现阶段未进行实验室检查。全脑 T1 加权和 T2 加权 MRI 扫描显示一个圆形病变(T1 暗,T2 亮),测量
摘要背景评估 CT 检测到的肺结节的恶性肿瘤风险是临床管理的核心。人工智能 (AI) 的使用为改善风险预测提供了机会。在这里,我们比较了一种人工智能算法,即肺癌预测卷积神经网络 (LCP-CNN) 与英国指南中推荐的布洛克大学模型的性能。方法回顾性地收集了英国三家医院偶然发现的 5-15 毫米肺结节数据集,用于验证研究。每个结节的真实诊断基于组织学(任何癌症都需要)、分辨率、稳定性或(仅适用于肺淋巴结)专家意见。1187 名患者中有 1397 个结节,其中 229 名(19.3%)患者中的 234 个结节为癌症。在预定义的分数阈值下比较了布洛克模型和 LCP-CNN 的模型判别力和性能统计数据。结果 LCP-CNN 的曲线下面积为 89.6%(95% CI 87.6 至 91.5),而 Brock 模型的曲线下面积为 86.8%(95% CI 84.3 至 89.1)(p≤0.005)。使用 LCP-CNN,我们发现 24.5% 的结节得分低于最低癌症结节评分,而使用 Brock 评分时这一比例为 10.9%。使用预定义的阈值,我们发现 LCP-CNN 给出了一个假阴性(0.4% 的癌症),而 Brock 模型给出了六个(2.5%),同时两个模型的特异性统计数据相似。结论与 Brock 模型相比,LCP-CNN 评分具有更好的辨别力,并且可以识别出更大比例的良性结节而不会遗漏癌症。这有可能大幅减少所需的监测 CT 扫描比例,从而节省大量资源。
信号的非平稳性变化且通常与类别相关,这是将脑电图 (EEG) 认知工作负荷估计的常见发现从实验室实验转移到现实场景或其他实验时面临的一大挑战。此外,脑信号反映的实际认知工作负荷是否是估计的主要贡献,还是具有辨别力和与类别相关的肌肉和眼部活动(可能是工作负荷水平变化的次要影响),这通常仍是一个悬而未决的问题。在本研究中,我们研究了一种基于波束成形的适应变化设置的空间滤波新方法。我们将其与无空间滤波和常见空间模式 (CSP) 进行比较。我们在拖船模拟器上使用真实的操纵任务以及听觉 n-back 次要任务作为两种不同的条件来诱导专业拖船船长的工作负荷变化。除了典型的条件内分类外,我们还研究了不同分类方法在 n-back 条件和操纵任务之间转移的能力。结果表明,在具有挑战性的迁移设置中,所提出的方法比其他方法具有明显优势。虽然在两种情况下(22% 和 10%),无滤波平均导致条件内归一化分类损失最低,但我们使用自适应波束形成(30% 和 18%)的方法与 CSP(33% 和 15%)的表现相当。重要的是,在从一种设置转移到另一种设置时,无滤波和 CSP 导致性能接近偶然水平(45% 到 53%),而我们的方法则是唯一能够在所有其他场景(34% 和 35%)中进行分类的方法,与偶然水平有显著差异。场景中信号成分的变化导致需要调整空间滤波才能进行迁移。使用我们的方法,迁移是成功的,因为滤波针对神经成分的提取进行了优化,并且对其头皮模式的额外研究主要揭示了神经起源。有趣的发现是,模式在不同条件之间略有变化。我们得出结论:低归一化损失的方法依赖于眼睛和肌肉活动,这种方法在一定条件下可以成功进行分类,但在分类器转移中会失败,因为眼睛和肌肉的贡献高度特定于条件。
目的 预测严重创伤性脑损伤 (sTBI) 的结果具有挑战性,现有模型对个体患者的适用性有限。本研究旨在确定可以预测 sTBI 后恢复情况的指标。研究人员努力证明脑电图上的后部优势节律与积极结果密切相关,并开发一种基于机器学习的新型模型,准确预测意识的恢复。方法 在这项回顾性研究中,作者评估了 2010 年至 2021 年期间所有因 sTBI(格拉斯哥昏迷量表 [GCS] 评分 ≤ 8)入院的插管成年人,他们在 sTBI 后 30 天内接受了 EEG 记录(n = 195)。收集了 73 个临床、放射学和 EEG 变量。根据受伤后 30 天内是否出现 PDR,创建了两个队列:有 PDR 的队列(PDR[+] 队列,n = 51)和没有 PDR 的队列(PDR[-] 队列,n = 144),以评估表现和四种结果的差异:院内生存率、恢复服从命令的能力、出院时格拉斯哥预后量表扩展版 (GOS-E) 评分以及出院后 6 个月的 GOS-E 评分。AutoScore 是一种基于机器学习的临床评分生成器,可选择重要预测变量并为其分配权重,用于创建预测院内生存率和恢复服从命令能力的预后模型。最后,使用 MRC-CRASH 和 IMPACT 创伤性脑损伤预测模型将预期的患者结果与真实结果进行比较。结果 在入院时,PDR(−) 组的平均 GCS 运动分较低(1.97 比 2.45,p = 0.048)。尽管预测结果(通过 MRC-CRASH 和 IMPACT)没有差异,但 PDR(+) 组具有更高的院内生存率(84.3% 比 63.9%,p = 0.007)、恢复听从指令率(76.5% 比 53.5%,p = 0.004)和平均出院 GOS-E 评分(3.00 比 2.39,p = 0.006)。6 个月 GOS-E 评分没有差异。然后使用 AutoScore 识别以下 7 个对院内生存率和恢复听从指令具有高度预测性的变量:年龄、体重指数、收缩压、瞳孔反应性、血糖和血红蛋白(均在入院时)以及 EEG 上的 PDR。该模型对预测住院生存率(曲线下面积 [AUC] 0.815)和恢复命令执行能力(AUC 0.700)具有出色的辨别力。结论 sTBI 患者脑电图的 PDR 可预测有利的结果。作者的预后模型在预测这些结果方面具有很强的准确性,并且比以前报告的模型表现更好。作者的模型在临床决策以及为此类伤害后的家庭提供咨询方面很有价值。