我们提出了一种变分量子算法来制备一维格子量子哈密顿量的基态,该算法专门为可编程量子设备量身定制,其中量子位之间的相互作用由量子数据总线 (QDB) 介导。对于具有轴向质心 (COM) 振动模式作为单个 QDB 的捕获离子,我们的方案使用共振边带光脉冲作为资源操作,这可能比非共振耦合更快,因此不易退相干。状态准备结束时 QDB 与量子位的分离是变分优化的副产品。我们用数值模拟了离子中 Su-Schrieffer-Heeger 模型的基态制备,并表明我们的策略是可扩展的,同时能够容忍 COM 模式的有限温度。
根据 2009 年 7 月 17 日第 145-FZ 号联邦法“关于“俄罗斯高速公路”国有公司”以及俄罗斯联邦某些立法法案的修正案,以非营利组织的形式成立”。国家公司的创建和运营目的是在信托管理的基础上使用联邦财产提供政府服务并在道路管理领域行使其他权力,以及维护和发展国家公司的高速公路网络,提高其通行能力,确保交通安全,提高向国有公司道路使用者提供的服务质量,开发位于国有公司道路通行权和路边带范围内以及国家公司确定的其他区域的道路服务设施。俄罗斯联邦政府联合会的目标是发展公路并改善其运输和运营条件。
根据 2009 年 7 月 17 日第 145-FZ 号联邦法“关于“俄罗斯高速公路”国有公司”以及俄罗斯联邦某些立法法案的修正案,以非营利组织的形式成立”。国家公司的创建和运营目的是在信托管理的基础上使用联邦财产提供政府服务并在道路管理领域行使其他权力,以及维护和发展国家公司的高速公路网络,提高其通行能力,确保交通安全,提高向国有公司道路使用者提供的服务质量,开发位于国有公司道路通行权和路边带范围内以及国家公司确定的其他区域的道路服务设施。俄罗斯联邦政府联合会的目标是发展公路并改善其运输和运营条件。
HD Radio 功能最强大的先进激励器 您会发现 FlexStar 经过重新设计,远远超出了第一代和第二代 HD 激励器。不再是“激励器 PC”,这种基于 DSP 的新解决方案现在可在安装在发射器内的单个紧凑外壳中生成 HD 和 FM 信号。与配套的 HDE-100 导出器一起使用,所有音频处理和数字流生成现在都可以移至演播室,以便于访问管理。FlexStar 的其他重要功能包括前面板频谱显示(用于快速检查边带频谱)、内置 RBDS 和 SCA (2) 发生器、多输入切换以及直观的菜单驱动图形用户界面 (GUI),用于设置和广泛的诊断。它确实是在一个紧凑的机箱中安装了两个激励器!听众也会听到不同!
压缩态是连续变量 (CV) 量子信息处理的主要资源。为了以可扩展且稳健的方式实现 CV 协议,最好使用集成光子学平台生成和操纵压缩态。在本信中,我们展示了使用具有双泵四波混频过程的小型氮化硅微谐振器在射频载波边带中生成正交相位压缩态。我们记录的压缩噪声水平比光电流散粒噪声低 1.34 dB(0.16 dB),这相当于芯片上 3.09 dB(0.49 dB)的正交压缩。我们还表明,考虑泵浦场的非线性行为对于正确预测此系统中可以产生的压缩至关重要。这项技术代表着朝着创建和操纵可用于量子信息应用(包括通用量子计算)的大规模 CV 簇状态迈出了重要一步。
有效控制线性高斯量子 (LGQ) 系统是基础量子理论研究和现代量子技术发展中的重要任务。在此,我们提出了一种基于梯度下降算法的通用量子学习控制方法,用于最佳控制 LGQ 系统。我们的方法利用完全描述 LGQ 系统量子态的一阶和二阶矩,灵活地设计用于不同任务的损失函数。我们使用这种方法展示了深度光机械冷却和大型光机械纠缠。我们的方法能够在短时间内对机械谐振器进行快速和深度基态冷却,超越了连续波驱动强耦合机制中边带冷却的限制。此外,即使热声子占有率达到一百,光机械纠缠也可以非常快地产生,并且超过相应稳态纠缠的几倍。这项工作不仅拓宽了量子学习控制的应用范围,而且为 LGQ 系统的最优控制开辟了一条途径。
原子量子圈(“旋转”)与捕获的离子库仑晶体中的集体运动之间的抽象激光控制的纠缠需要从激光器进行条件动量转移。由于自旋依赖性力是从自旋光相互作用中的空间梯度得出的,因此该力通常是纵向的,与平均激光K -vector(或两个梁的K-矢量差异)平行且成比例,这构成了可访问的自旋 - 运动偶联的方向和相对幅度。在这里,我们显示了如何由于其横向发射中的梯度而垂直于单个激光束传递动量。通过控制离子的位置的横向梯度通过光束塑造,可以调节边带和载体的相对强度,以优化所需的相互作用并抑制不需要的,抗谐振的效果,从而降低了栅极的限制。我们还讨论了这种效果如何在最近的实验中扮演着未引人注目的角色。
观察捕获离子的振荡是最先进的量子1和基本2物理实验的必不可少的技术。裸露振荡频率的估计用于提供剩余能量的精确值3原子的估计中微子质量的关键作用。4在精确光谱实验5中还研究了振荡频率的差异,以测量基本颗粒的旋转磁因子,这与QED的测试相关,6,并在物质和反物质之间寻找不对称性。7笔陷阱中的常规方法是检测陷阱电极上离子图像电荷引起的电流。2正在探索新方法,以使用第二离子对运动敏感更高敏感性进行精确测量。8附加离子应具有有利的电子结构,以通过量子逻辑光谱法制备和读取互动的离子特性。9量子逻辑方案需要几个控制的激光脉冲来操纵辅助离子。该离子是通过激光冷却制备的,然后通过使用狭窄的过渡来解决链的运动边带来审问。过去已经探索了依赖散射光的分析的边带光谱进行运动检测的替代技术。10–14这些技术基于
六、中性原子集合光学频率标准 36 A. 原子候选者:碱土元素 36 B. 碱土原子的激光冷却和俘获 36 C. 自由空间标准 39 D. 光学晶格中的强原子限制 39 1. 分辨良好的边带和 Lamb-Dicke 区域的光谱 39 2. 神奇波长 41 3. 晶格限制原子的光谱 43 4. 超高分辨率光谱 44 E. 晶格钟中的系统效应 45 1. 光学晶格斯塔克位移 45 2. 塞曼位移 46 3. 黑体辐射的斯塔克位移 47 4. 冷碰撞位移 49 5. 询问激光的斯塔克位移 50 6. 多普勒效应 50 7. 直流斯塔克位移 51 8. 其他效应 51 F. 基于费米子或玻色子的光学晶格钟 51 G. 晶格钟性能 53 1. 时钟稳定性 53 2. 系统评估 55