摘要:精神分裂症(SCZ)和强迫症 - 螺栓障碍(OCD)通常具有不同的诊断标准和治疗方法。scz的特征是妄想,幻觉,杂乱无章的语音和认知障碍,而强迫症涉及持续的,侵入性的思想(痴迷)和重复行为(强迫)。这些疾病的同时出现增加了临床复杂性,并为诊断和治疗带来了重大挑战。流行病学研究表明,SCZ患者合并症OCD的患病率从12%到25%不等,比一般人群高。病因假设提出了共有的遗传,神经生物学和环境因素,遗传研究鉴定了常见的基因座和途径,例如谷氨酸能和多巴胺能系统。神经影像学研究揭示了重叠和独特的神经异常,表明共同且独特的神经生物学底物。环境因素,例如早期生活压力源和城市化,也有助于合并症。两种疾病的重叠临床特征都使诊断复杂化。治疗方法包括将SSRI与抗精神病药和认知行为疗法(CBT)相结合。SCZ和强迫症合并症的复杂性强调了对基于维度的,基于频谱的精神疾病观点的需求,以及传统的分类方法,以改善诊断和治疗结果。
本标准定义了一组必须实施的最低安全措施,以确保当局的安全边界,包括消费云服务。出于本标准的目的,可以将安全边界描述为具有不同安全要求或需求的任何两个环境(域)之间的分界线,例如内部网络,DMZ或DMZ和Internet。作为标准仅提供最低限度的措施,应根据需要解决的威胁和风险,相关数据的敏感性以及与最新的安全性增强功能保持一致。有关推荐的外部参考,请参见附录C。安全措施源自行业最佳实践,即由NIST,CIS和OWASP发布的指南(请参阅附录C以获取完整列表外部参考),并支持当局或我们的第三方提供商选择的适当安全控制,例如CIS关键安全控制设置。[请参阅外部参考]
毕竟,思想也可以理解为将电脉冲转化为其他某种东西,即通过电和化学突触网络传播的波前。尽管这一观点过于简单化,但却代表了当代科学文化的主流观点。那么,是什么阻止我们通过无线连接将神经电磁波传输到外部设备呢? “没什么”,埃隆·马斯克可能会说,他是南非裔加拿大企业家,也是特斯拉、Neuralink、SpaceX 和 The Boring Company 等创新公司的负责人。毕竟,BMI(脑机接口)研究主要侧重于实用和工程方面,目的是利用和操纵脑信号来实现非常具体的应用。在这方面,对思维的神经生理和心理机制的理论解释和深刻理解仍然处于背景之中。因此,重要的是结果,而不是理论论据。无论如何,在科学知识呈指数级增长的时代,伊隆·马斯克无疑是技术先锋领域的先驱,他宣传自己对世界的大胆设想,预测人类智慧与科技力量的融合。他的最新商业项目 Neuralink 旨在通过将思想转化为对计算机和机器的直接控制来彻底改变与数字设备的交互。他最近发表的声明涉及在四肢瘫痪男子的大脑中开发神经植入物(一种尺寸非常小的复杂脑机接口),引发了媒体前所未有的狂热。虽然有些人意识到了它的革命性潜力,但其他人却对这一声明持怀疑态度,认为这是一个未来主义的海市蜃楼,甚至是一场值得威廉·吉布森风格的赛博朋克叙事的噩梦。在他的代表作《神经漫游者》(1984)中,主角凯斯植入了植入物,使他能够直接连接到网络空间。再比如,彼得·汉密尔顿 (Peter Hamilton) 的《联邦传奇》小说预见了这样一个世界,所谓的“OCtattoos”植入物使心灵感应交流和即时获取信息成为可能。马斯克的公司 Neuralink 开发的芯片被冠以“心灵感应”这个令人回味的名字,这并非巧合。在未来主义者和超人类主义者中,有些人热情地欢迎人类向后人类状态进化的前景,这让人想起尼采的超人,但具有控制论的本质。这些不仅仅是幻想:我们正在见证一场真正的转变,这是神经科学和生物医学工程领域数十年先进研究的成果。这是一段令人难以置信的科技之旅,从何塞·德尔加多 (1915-2011) 发明刺激接收器 (1965) 到今天,通过一口气读完福阿德·萨布里 (Fouad Sabry) 的论文《人工智能》(mondadoristore.it/Artificial Brain-Fouad-Sabry/ea661000041060/) 就可以回顾这段旅程。最正统的科学界多年来一直怀着怀疑和难以置信的态度关注着 Neuralink 的进化:一只猕猴和两头猪借助革命性的设备与计算机进行互动。尤其是这只名叫 Pager 的猕猴,它通过意念玩电子游戏 Pong,让观众着迷。最初,他使用普通的操纵杆进行训练,植入物记录下他的神经信号,然后他就可以在没有任何物理辅助的情况下操纵游戏。从医疗应用到人机交互,这只是未来发展的冰山一角。或许媒体过于重视伊隆·马斯克的案例了。事实上,Neuralink 并不是该领域唯一的参与者。其他主要参与者,如荷兰初创公司 Onward Medical 和位于格勒诺布尔 Polygone Scientifique 的法国中心 Clinatec,都在该领域取得了重大进展。两者都开发了先进的技术,包括或多或少具有侵入性的植入式系统,旨在为脊髓提供有针对性的、可编程的刺激(所谓的配对或植入耦合)。澳大利亚公司 Synchron 也做了同样的尝试,该公司无需打开颅骨即可通过动脉进行植入。这些创新旨在恢复先前由于脊柱损伤而丧失的运动和功能,从而中断神经冲动的传递,同时将患者的风险降至最低。然而,在Neuralink中,耦合并不是发生在大脑和脊髓之间,而是大脑和外部设备之间。这是一个不小的差异。这也是一种侵入性做法。正如西蒙尼·罗西 (Simone Rossi) 在其精彩论文《电子大脑》(2020) 中指出的那样,这些技术通常利用 mu 节奏脑波,在较小程度上也利用 beta 波。这些是大脑中的电压,由运动的想法激活,可以使用插入大脑组织的非常薄的电极将其转换为数字命令。算法在将这些信号转换为可重复的动作、执行信号分析和选择特定特征等任务方面发挥着至关重要的作用,然后这些任务被转换成外部设备的输入。该领域最具创新性的工具之一是 ART(自适应共振理论)神经网络,它可以实时学习并保留先前获得的信息。这这这从何塞·德尔加多 (1915-2011) 和他的刺激接收器 (1965) 的时代,到今天,可以通过一口气读完福阿德·萨布里 (Fouad Sabry) 的论文《人工智能》来回顾 (mondadoristore.it/Artificial Brain-Fouad-Sabry/ea661000041060/)。最正统的科学界多年来一直怀着怀疑和难以置信的态度关注着 Neuralink 的进化:一只猕猴和两头猪借助革命性的设备与计算机进行互动。尤其是这只名叫 Pager 的猕猴,它通过意念玩电子游戏 Pong 吸引了观众的注意力。最初,他使用普通的操纵杆进行训练,植入物记录下他的神经信号,然后他就可以在没有任何物理辅助的情况下操纵游戏。从医疗应用到人机交互,这只是未来发展的冰山一角。或许媒体过于重视伊隆·马斯克的案子了。事实上,Neuralink 并不是该领域唯一的参与者。其他主要参与者,如荷兰初创公司 Onward Medical 和位于格勒诺布尔 Polygone Scientifique 的法国中心 Clinatec,都在该领域取得了重大进展。两者都开发了先进的技术,包括或多或少具有侵入性的植入式系统,旨在为脊髓提供有针对性的、可编程的刺激(所谓的配对或植入耦合)。澳大利亚公司 Synchron 也做了同样的尝试,该公司无需打开颅骨即可通过动脉进行植入。这些创新旨在恢复先前由于脊柱损伤而丧失的运动和功能,从而中断神经冲动的传递,同时将患者的风险降至最低。然而,在Neuralink中,耦合并不是发生在大脑和脊髓之间,而是大脑和外部设备之间。这是一个不小的差异。这也是一种侵入性做法。正如西蒙尼·罗西 (Simone Rossi) 在其精彩论文《电子大脑》(2020) 中指出的那样,这些技术通常利用的是 mu 节奏脑波,在较小程度上也利用 beta 波。这些是大脑中的电压,由运动的想法激活,可以使用插入大脑组织的非常薄的电极将其转换为数字命令。算法在将这些信号转换为可重复的动作、执行信号分析和选择特定特征等任务方面发挥着至关重要的作用,然后这些任务被转换成外部设备的输入。该领域最具创新性的工具之一是 ART(自适应共振理论)神经网络,它可以实时学习并保留先前获得的信息。这从何塞·德尔加多 (1915-2011) 和他的刺激接收器 (1965) 的时代,到今天,可以通过一口气读完福阿德·萨布里 (Fouad Sabry) 的论文《人工智能》来回顾 (mondadoristore.it/Artificial Brain-Fouad-Sabry/ea661000041060/)。最正统的科学界多年来一直怀着怀疑和难以置信的态度关注着 Neuralink 的进化:一只猕猴和两头猪借助革命性的设备与计算机进行互动。尤其是这只名叫 Pager 的猕猴,它通过意念玩电子游戏 Pong 吸引了观众的注意力。最初,他使用普通的操纵杆进行训练,植入物记录下他的神经信号,然后他就可以在没有任何物理辅助的情况下操纵游戏。从医疗应用到人机交互,这只是未来发展的冰山一角。或许媒体过于重视伊隆·马斯克的案例了。事实上,Neuralink 并不是该领域唯一的参与者。其他主要参与者,如荷兰初创公司 Onward Medical 和位于格勒诺布尔 Polygone Scientifique 的法国中心 Clinatec,都在该领域取得了重大进展。两者都开发了先进的技术,包括或多或少具有侵入性的植入式系统,旨在为脊髓提供有针对性的、可编程的刺激(所谓的配对或植入耦合)。澳大利亚公司 Synchron 也做了同样的尝试,该公司无需打开颅骨即可通过动脉进行植入。这些创新旨在恢复先前由于脊柱损伤而丧失的运动和功能,从而中断神经冲动的传递,同时将患者的风险降至最低。然而,在Neuralink中,耦合并不是发生在大脑和脊髓之间,而是大脑和外部设备之间。这是一个不小的差异。这也是一种侵入性做法。正如西蒙尼·罗西 (Simone Rossi) 在其精彩论文《电子大脑》(2020) 中指出的那样,这些技术通常利用 mu 节奏脑波,在较小程度上也利用 beta 波。这些是大脑中的电压,由运动的想法激活,可以使用插入大脑组织的非常薄的电极将其转换为数字命令。算法在将这些信号转换为可重复的动作、执行信号分析和选择特定特征等任务方面发挥着至关重要的作用,然后这些任务被转换成外部设备的输入。该领域最具创新性的工具之一是 ART(自适应共振理论)神经网络,它可以实时学习并保留先前获得的信息。这通过一口气阅读 Fouad Sabry 的论文“人工智能”来回顾(mondadoristore.it/Artificial Brain-Fouad-Sabry/ea661000041060/)。最正统的科学界多年来一直怀着怀疑和难以置信的态度关注着 Neuralink 的进化:一只猕猴和两头猪借助革命性的设备与计算机进行互动。尤其是这只名叫 Pager 的猕猴,它通过意念玩电子游戏 Pong,让观众着迷。最初,他使用普通的操纵杆进行训练,植入物记录下他的神经信号,然后他就可以在没有任何物理辅助的情况下操纵游戏。从医疗应用到人机交互,这只是未来发展的冰山一角。或许媒体过于重视伊隆·马斯克的案例了。事实上,Neuralink 并不是该领域唯一的参与者。其他主要参与者,如荷兰初创公司 Onward Medical 和位于格勒诺布尔 Polygone Scientifique 的法国中心 Clinatec,都在该领域取得了重大进展。两者都开发了先进的技术,包括或多或少具有侵入性的植入式系统,旨在为脊髓提供有针对性的、可编程的刺激(所谓的配对或植入耦合)。澳大利亚公司 Synchron 也做了同样的尝试,该公司无需打开颅骨即可通过动脉进行植入。这些创新旨在恢复先前由于脊柱损伤而丧失的运动和功能,从而中断神经冲动的传递,同时将患者的风险降至最低。然而,在Neuralink中,耦合并不是发生在大脑和脊髓之间,而是大脑和外部设备之间。这是一个不小的差异。这也是一种侵入性做法。正如西蒙尼·罗西 (Simone Rossi) 在其精彩论文《电子大脑》(2020) 中指出的那样,这些技术通常利用 mu 节奏脑波,在较小程度上也利用 beta 波。这些是大脑中的电压,由运动的想法激活,可以使用插入大脑组织的非常薄的电极将其转换为数字命令。算法在将这些信号转换为可重复的动作、执行信号分析和选择特定特征等任务方面发挥着至关重要的作用,然后这些任务被转换成外部设备的输入。该领域最具创新性的工具之一是 ART(自适应共振理论)神经网络,它可以实时学习并保留先前获得的信息。这通过一口气阅读 Fouad Sabry 的论文“人工智能”来回顾(mondadoristore.it/Artificial Brain-Fouad-Sabry/ea661000041060/)。最正统的科学界多年来一直怀着怀疑和难以置信的态度关注着 Neuralink 的进化:一只猕猴和两头猪借助革命性的设备与计算机进行互动。尤其是这只名叫 Pager 的猕猴,它通过意念玩电子游戏 Pong,让观众着迷。最初,他使用普通的操纵杆进行训练,植入物记录下他的神经信号,然后他就可以在没有任何物理辅助的情况下操纵游戏。从医疗应用到人机交互,这只是未来发展的冰山一角。或许媒体过于重视伊隆·马斯克的案例了。事实上,Neuralink 并不是该领域唯一的参与者。其他主要参与者,如荷兰初创公司 Onward Medical 和位于格勒诺布尔 Polygone Scientifique 的法国中心 Clinatec,都在该领域取得了重大进展。两者都开发了先进的技术,包括或多或少具有侵入性的植入式系统,旨在为脊髓提供有针对性的、可编程的刺激(所谓的配对或植入耦合)。澳大利亚公司 Synchron 也做了同样的尝试,该公司无需打开颅骨即可通过动脉进行植入。这些创新旨在恢复先前由于脊柱损伤而丧失的运动和功能,从而中断神经冲动的传递,同时将患者的风险降至最低。然而,在Neuralink中,耦合并不是发生在大脑和脊髓之间,而是大脑和外部设备之间。这是一个不小的差异。这也是一种侵入性做法。正如西蒙尼·罗西 (Simone Rossi) 在其精彩论文《电子大脑》(2020) 中指出的那样,这些技术通常利用 mu 节奏脑波,在较小程度上也利用 beta 波。这些是大脑中的电压,由运动的想法激活,可以使用插入大脑组织的非常薄的电极将其转换为数字命令。算法在将这些信号转换为可重复的动作、执行信号分析和选择特定特征等任务方面发挥着至关重要的作用,然后这些任务被转换成外部设备的输入。该领域最具创新性的工具之一是 ART(自适应共振理论)神经网络,它可以实时学习并保留先前获得的信息。这一只猕猴和两只猪借助革命性的设备与计算机进行互动。尤其是这只名叫 Pager 的猕猴,它通过意念玩电子游戏 Pong 吸引了观众的注意力。最初,他使用普通的操纵杆进行训练,植入物记录下他的神经信号,然后他就可以在没有任何物理辅助的情况下操纵游戏。从医疗应用到人机交互,这只是未来发展的冰山一角。或许媒体过于重视伊隆·马斯克的案例了。事实上,Neuralink 并不是该领域唯一的参与者。其他主要参与者,如荷兰初创公司 Onward Medical 和位于格勒诺布尔 Polygone Scientifique 的法国中心 Clinatec,都在该领域取得了重大进展。两者都开发了先进的技术,包括或多或少具有侵入性的植入式系统,旨在为脊髓提供有针对性的、可编程的刺激(所谓的配对或植入耦合)。澳大利亚公司 Synchron 也采取了同样的措施,该公司无需打开颅骨即可通过动脉进行植入。这些创新旨在恢复先前由于脊柱损伤而丧失的运动和功能,从而中断神经冲动的传递,同时将患者的风险降至最低。然而,在Neuralink中,耦合并不是发生在大脑和脊髓之间,而是大脑和外部设备之间。这是一个不小的差异。这也是一种侵入性做法。正如西蒙尼·罗西 (Simone Rossi) 在其精彩论文《电子大脑》(2020) 中指出的那样,这些技术通常利用的是 mu 节奏脑波,在较小程度上也利用 beta 波。这些是大脑中的电压,由运动的想法激活,可以使用插入大脑组织的非常薄的电极将其转换为数字命令。算法在将这些信号转换为可重复的动作、执行信号分析和选择特定特征等任务方面发挥着至关重要的作用,然后这些任务被转换成外部设备的输入。该领域最具创新性的工具之一是 ART(自适应共振理论)神经网络,它可以实时学习并保留先前获得的信息。这一只猕猴和两只猪借助革命性的设备与计算机进行互动。尤其是这只名叫 Pager 的猕猴,它通过意念玩电子游戏 Pong,让观众着迷。最初,他使用普通的操纵杆进行训练,植入物记录了他的神经信号,然后他就可以在没有任何物理辅助的情况下操纵游戏。从医疗应用到人机交互,这只是未来发展的冰山一角。或许媒体过于重视伊隆·马斯克的案子了。事实上,Neuralink 并不是该领域唯一的参与者。其他主要参与者,如荷兰初创公司 Onward Medical 和位于格勒诺布尔 Polygone Scientifique 的法国中心 Clinatec,都在该领域取得了重大进展。两者都开发了先进的技术,包括或多或少具有侵入性的植入式系统,旨在为脊髓提供有针对性的、可编程的刺激(所谓的配对或植入耦合)。澳大利亚公司 Synchron 也做了同样的尝试,该公司无需打开颅骨即可通过动脉进行植入。这些创新旨在恢复先前由于脊柱损伤而丧失的运动和功能,从而中断神经冲动的传递,同时将患者的风险降至最低。然而,在Neuralink中,耦合并不是发生在大脑和脊髓之间,而是大脑和外部设备之间。这是一个不小的差异。这也是一种侵入性做法。正如西蒙尼·罗西 (Simone Rossi) 在其精彩论文《电子大脑》(2020) 中指出的那样,这些技术通常利用 mu 节奏脑波,在较小程度上也利用 beta 波。这些是大脑中的电压,由运动的想法激活,可以使用插入大脑组织的非常薄的电极将其转换为数字命令。算法在将这些信号转换为可重复的动作、执行信号分析和选择特定特征等任务方面发挥着至关重要的作用,然后这些任务被转换成外部设备的输入。该领域最具创新性的工具之一是 ART(自适应共振理论)神经网络,它可以实时学习并保留先前获得的信息。这或许媒体过于重视伊隆·马斯克的案例了。事实上,Neuralink 并不是该领域唯一的参与者。其他主要参与者,如荷兰初创公司 Onward Medical 和位于格勒诺布尔 Polygone Scientifique 的法国中心 Clinatec,都在该领域取得了重大进展。两者都开发了先进的技术,包括或多或少具有侵入性的植入式系统,旨在为脊髓提供有针对性的、可编程的刺激(所谓的配对或植入耦合)。澳大利亚公司 Synchron 也做了同样的尝试,该公司无需打开颅骨即可通过动脉进行植入。这些创新旨在恢复先前由于脊柱损伤而丧失的运动和功能,从而中断神经冲动的传递,同时将患者的风险降至最低。然而,在Neuralink中,耦合并不是发生在大脑和脊髓之间,而是大脑和外部设备之间。这是一个不小的差异。这也是一种侵入性做法。正如西蒙尼·罗西 (Simone Rossi) 在其精彩论文《电子大脑》(2020) 中指出的那样,这些技术通常利用 mu 节奏脑波,在较小程度上也利用 beta 波。这些是大脑中的电压,由运动的想法激活,可以使用插入大脑组织的非常薄的电极将其转换为数字命令。算法在将这些信号转换为可重复的动作、执行信号分析和选择特定特征等任务方面发挥着至关重要的作用,然后这些任务被转换成外部设备的输入。该领域最具创新性的工具之一是 ART(自适应共振理论)神经网络,它可以实时学习并保留先前获得的信息。这或许媒体过于重视伊隆·马斯克的案例了。事实上,Neuralink 并不是该领域唯一的参与者。其他主要参与者,如荷兰初创公司 Onward Medical 和位于格勒诺布尔 Polygone Scientifique 的法国中心 Clinatec,都在该领域取得了重大进展。两者都开发了先进的技术,包括或多或少具有侵入性的植入式系统,旨在为脊髓提供有针对性的、可编程的刺激(所谓的配对或植入耦合)。澳大利亚公司 Synchron 也做了同样的尝试,该公司无需打开颅骨即可通过动脉进行植入。这些创新旨在恢复先前由于脊柱损伤而丧失的运动和功能,从而中断神经冲动的传递,同时将患者的风险降至最低。然而,在Neuralink中,耦合并不是发生在大脑和脊髓之间,而是大脑和外部设备之间。这是一个不小的差异。这也是一种侵入性做法。正如西蒙尼·罗西 (Simone Rossi) 在其精彩论文《电子大脑》(2020) 中指出的那样,这些技术通常利用 mu 节奏脑波,在较小程度上也利用 beta 波。这些是大脑中的电压,由运动的想法激活,可以使用插入大脑组织的非常薄的电极将其转换为数字命令。算法在将这些信号转换为可重复的动作、执行信号分析和选择特定特征等任务方面发挥着至关重要的作用,然后这些任务被转换成外部设备的输入。该领域最具创新性的工具之一是 ART(自适应共振理论)神经网络,它可以实时学习并保留先前获得的信息。这正如西蒙尼·罗西 (Simone Rossi) 在其精彩论文《电子大脑》(2020) 中指出的那样,这些技术通常利用的是 mu 节奏脑波,在较小程度上也利用 beta 波。这些是大脑中的电压,由运动的想法激活,可以使用插入大脑组织的非常薄的电极将其转换为数字命令。算法在将这些信号转换为可重复的动作、执行信号分析和选择特定特征等任务方面发挥着至关重要的作用,然后这些任务被转换成外部设备的输入。该领域最具创新性的工具之一是 ART(自适应共振理论)神经网络,它可以实时学习并保留先前获得的信息。这正如西蒙尼·罗西 (Simone Rossi) 在其精彩论文《电子大脑》(2020) 中指出的那样,这些技术通常利用的是 mu 节奏脑波,在较小程度上也利用 beta 波。这些是大脑中的电压,由运动的想法激活,可以使用插入大脑组织的非常薄的电极将其转换为数字命令。算法在将这些信号转换为可重复的动作、执行信号分析和选择特定特征等任务方面发挥着至关重要的作用,然后这些任务被转换成外部设备的输入。该领域最具创新性的工具之一是 ART(自适应共振理论)神经网络,它可以实时学习并保留先前获得的信息。这
唯一的国家电压调节标准是 ANSI C84.1。其名称为美国电力系统和设备国家标准 - 电压额定值(60 赫兹)。1954 年的第一个版本是两个标准的组合,一个来自代表公用事业的爱迪生电气研究所,另一个来自代表美国电气制造商协会的 NEMA。它为公用事业建立了标称电压额定值以调节服务交付,并在使用点建立了操作公差。电力系统的设计和运行以及由此类系统供电的设备的设计应根据这些电压进行协调。这样,设备将在系统遇到的实际使用电压范围内按照产品标准令人满意地运行。这些限制适用于持续电压水平,而不适用于可能因开关操作、故障清除、电机启动电流等原因而发生的瞬时电压偏移。为了进一步实现这一目标,本标准为每个标称系统电压建立了两个服务电压和使用电压变化范围,指定为范围 A 和范围 B,其限值基于 120 伏标称系统在图 1 中进行了说明。
巴里缺少“随时可动工”的土地和/或大片土地,这些土地可以容纳现有企业的扩张或新的大型企业。然而,“巴里正在实施一项有针对性的计划,以加速南巴里关键地区的线性基础设施的扩展,以将其推向市场”(如研究报告第 17-21 页所示)。在巴里以外收购额外的就业用地并不能解决其短期供应问题(如研究报告第 21 页所示)。
摘要本研究介绍了针对齿轮自行车量身定制的基于螺线管的齿轮转移机制,以增强身体残障人士的能力。传统的齿轮转移系统需要明显的手部强度和协调,这对于活动能力有限的人来说是无法访问的。为了解决这个问题,提出的系统将由微控制器控制的螺线管执行器结合在一起,该螺线管执行器将用户输入从简单接口(例如按钮或操纵杆)转换为精确的齿轮转换。这种设计消除了手动努力,可以使齿轮平稳而可靠的变化,同时优先考虑用户友好性和紧凑性。在各种自行车条件下进行了广泛制造和测试原型,显示可访问性,可用性和能源效率的显着提高。参与者参加了用户试验的参与者,强调了物理压力的减少和易于操作,从而验证了系统增强循环包含性的潜力。凭借其适应性,能源效率和实践设计,这项创新代表了一种适应性骑行,促进独立性和更广泛参与的解决方案。关键字:螺线管变速杆,自适应骑行,可访问性,残疾人,齿轮自行车。
由蒂姆·桑兹(Tim Sands)总统领导,超越边界:2047年的愿景最终导致世代相传的愿景过程,将弗吉尼亚理工大学定位为一所国际认可的土地授予大学,从战略上解决了不断变化的高等教育环境所带来的挑战和机遇。超越边界确定了将弗吉尼亚理工大学转变为未来大学的三个指导概念:VT形发现(目的驱动的发现),发现社区(校园,地区和全球参与枢纽)和发现的纽带(跨学科发现)。