7.3 根据认证标准 7.1,步骤 2 a。ii.,代码和数据部分的哈希值需要单独计算。那么飞行控制器的参数属于固件的数据部分吗?如果是这样,那么制造商有 50 多个可更改的参数,其中很少一些可能会在每次飞行前更改(取决于场景)。现在制造商是否必须为每种情况计算哈希值?就像制造商必须对 50 多个参数进行排列组合并为每种可能的情况生成哈希值一样?(**) 用于合规标准的参数需要控制。飞行中使用的变量不包括在其中。通过将边界值作为参数,避免陷入变量的排列,对于飞行,使用将根据边界条件检查合规性的变量。
通常,对于高速运行的拾放机器人,在机器人制动阶段会损失大量能量。这是因为在这种运行阶段,大部分能量都以热量的形式耗散在电机驱动器的制动电阻上。为了提高高速拾放循环中的能源效率,本文研究了与电机并联配置的可变刚度弹簧 (VSS) 的使用。这些弹簧在制动阶段储存能量,而不是耗散能量。然后释放能量以在下一个位移阶段驱动机器人。这种设计方法与运动发生器相结合,通过基于机器人动力学求解边界值问题 (BVP),寻求优化轨迹以减少输入扭矩(从而减少能耗)。在五杆机构上对所提出方法的实验结果表明,输入扭矩大幅减少,因此能量损失也随之减少。
修订了8/24 Nova College Pousshore内容内容摘要MTH 289 - 微分方程扩展(3 cr。)课程描述介绍了微分方程,功率系列解决方案,傅立叶系列,拉普拉斯变换和傅立叶变换,部分微分方程和边界价值问题的系统。设计为数学,物理和工程科学计划的数学选修课程。讲座3小时。每周总计3小时。一般课程目的本课程的目的是提供STEM学生向4年大学的平稳过渡,并将其介绍到数学,物理和工程学的先进主题:用于求解微分方程的数值方法,经典的偏微分方程,用于解决PDES和边界值问题的方法(BVP)。课程先决条件/前提条件先决条件:MTH 267的完成级别或等同或同等学历。课程目标•线性一阶微分方程的系统
复杂积分:柯西-古尔萨定理(凸区域)、柯西积分公式、高阶导数、莫雷拉定理、柯西不等式和刘维尔定理、代数基本定理、最大模原理、泰勒定理、施瓦茨引理。劳伦级数、孤立奇点、卡索拉蒂-魏尔斯特拉斯定理、亚纯函数、鲁什定理、反函数定理、留数、柯西留数定理、积分求值、黎曼曲面。线性系统的直接和迭代方法、特征值分解和 QR/SVD 因式分解、数值算法的稳定性和准确性、稀疏和结构化矩阵。有限元方法:边界值问题的有限元公式、一维和二维有限元分析。优化技术:遗传算法(GA)、人工神经网络(ANN)、粒子群优化(PSO)。
PH401:数学物理 I (2-1-0-6) 线性代数:线性向量空间:对偶空间和向量、柯西-施瓦茨不等式、实数和复数向量空间的定义、度量空间、线性算子、子空间;跨度和线性独立性:行减少和方法;基础和维度:使用简化的跨度和独立性测试 (RREF) 方法;线性变换:图像、核、秩、基础变换、转移矩阵、同构、相似变换、正交性、Gram-Schmidt 程序、特征值和特征向量、希尔伯特空间]。张量:内积和外积、收缩、对称和反对称张量、度量张量、协变和逆变导数。常微分方程和偏微分方程:幂级数解、Frobenius 方法、Sturm-Liouville 理论和边界值问题、格林函数;笛卡尔和曲线坐标系中不同波动方程的分离变量法,涉及勒让德、埃尔米特、拉盖尔和贝塞尔函数等特殊函数以及涉及格林函数的方法及其应用。教材:
总课时:52 课程成果: CO1:应用矩阵理论和向量微积分的概念 CO2:开发求解微分方程的分析方法 CO3:应用有限差分和有限体积方法求解微分方程 CO4:在工程问题中实施分析和计算技术 矩阵的数学运算、线性方程组、一致性、向量空间、线性相关和独立性、基和维数、线性变换、投影、正交矩阵、正定矩阵、特征值和特征向量、矩阵的相似性、对角化、奇异值分解、矢量场、线积分。曲面积分、变量变换、格林定理、斯托克斯定理和散度定理 常微分方程 (ODE)、初值问题及其求解技术、二阶常微分方程的通解、齐次和非齐次情况、边界值问题、Sturm-Liouville 问题和 ODE 系统。偏微分方程 (PDE)、柯西问题、特征法、二阶 PDE 和分类、边界条件类型、热、波和拉普拉斯方程的公式和解。使用 MATLAB/Python 进行 ODE 和 PDE 的数值实现:ODE:初值问题:一阶和高阶方法、边界值问题、射击方法、数据拟合、最小二乘、标量传输方程的一阶和高阶数值方法、热、波和拉普拉斯方程的有限差分方法。与该项目相关的案例研究:地震波的声学模型、非均匀介质中的扩散、两个平板之间的流动发展、焊接问题、固体材料的热传导、扩散的相场解(Allen Cahn 1D 解)、具有 Lennard-Jones 势的两个或多个分子相互作用的解等。参考文献:[1] Lay, DC, Lay, SR 和 McDonald, JJ,2016 年,《线性代数及其应用》。Pearson,美国。[2] Kreyszig, E.,2011 年,《高等工程数学》,Wiley,印度。[3] Simmons, GF,2011 年,《微分方程及其应用和历史记录》,McGraw Hill,美国。[4] Sneddon,印第安纳州,2006 年,《偏微分方程元素》,多佛,美国。 [5] Rao, KS,2010 年,《偏微分方程简介》,Prentice-Hall,印度。[6] Butcher, JC,2003 年,《常微分方程的数值方法》,Wiley,美国。[7] Thomas, JW,2013 年,《数值偏微分方程:有限差分法》,Springer,瑞士。[8] Versteeg, HK 和 Malalasekera, W.,2007 年,《计算流体力学简介:有限体积》
Yee 网格以交错网格为代价,本质上满足了麦克斯韦方程的对合,使其成为粒子胞内 (PIC) 方法的最佳场求解器之一。在这张海报中,我们展示了一种应对这一挑战的 Vlasov-Maxwell 系统的新 PIC 方法。使用 Lorenz 规范将电场和磁场转换为矢量和标量势,麦克斯韦方程变为一组共位网格上的解耦矢量和标量波动方程,并且在牛顿-洛伦兹方程上采用粒子更新方程的不可分离哈密顿量公式。控制势的波动方程用线转置法求解,在时间上半离散化并求解由此产生的边界值问题。这将首先使用后向差分法在时间上离散化,并使用格林函数求解边界值问题,从而得到时间上一阶、空间上五阶和无条件稳定的方法 [1]。除了这些优点之外,它的空间导数也同样精确,这意味着哈密顿更新方程中的所有导数都与场本身一样精确。此外,时间一致性特性揭示了半离散连续性方程和半离散洛伦兹规范条件之间的等价性,以及半离散洛伦兹规范条件下的高斯定律 [2]。最后,这种时间一致性特性将在许多其他共置场求解器中探索,这些求解器具有二阶中心差分格式、所有后向差分格式和所有对角隐式龙格库塔格式 [3]。数值结果将在多个实验中展示这些方法。 *本研究得到了 AFOSR 拨款 FA9550-19-1-0281 和 FA9550-17-1-0394、NSF 拨款 DMS-1912183 和 DOE 拨款 DE-SC0023164 的支持。参考文献 [1] Christlieb, AJ、Sands, WA 和 White, SR,《具有广义动量公式的等离子体粒子内胞方法》,第一部分:模型公式,2024 年。arXiv: 2208.11291 [physics.plasm-ph]。 [2] Christlieb, AJ、Sands, WA 和 White, SR,《具有广义动量公式的等离子体粒子内胞方法》,第二部分:实施 Lorenz 规范条件。J Sci Comput 101,73(2024 年)。https://doi.org/10.1007/s10915-024-02728-6。 [3] Christlieb, AJ、Sands, WA 和 White, SR,《具有广义动量公式的等离子体粒子内网格方法》第三部分:一类规范守恒方法,2024 年。arXiv: 2410.18414 [physics.plasm-ph]。
详细课程大纲 第一单元:变换微积分拉普拉斯变换:拉普拉斯变换、性质、逆、卷积、用拉普拉斯变换求某些特殊积分、初值问题的解。傅里叶级数:周期函数、函数的傅里叶级数表示、半程级数、正弦和余弦级数、傅里叶积分公式、帕塞瓦尔恒等式。傅里叶变换:傅里叶变换、傅里叶正弦和余弦变换。线性、缩放、频移和时移性质。傅里叶变换的自互易性、卷积定理。应用于边界值问题。第二单元:数值方法近似和舍入误差、截断误差和泰勒级数。插值 - 牛顿前向、后向、拉格朗日除差。数值积分 - 梯形、辛普森 1/3。通过二分法、迭代法、牛顿-拉夫森法、雷古拉-法尔西法确定多项式和超越方程的根。通过高斯消元法和高斯-西德尔迭代法求解线性联立线性代数方程。曲线拟合-线性和非线性回归分析。通过欧拉法、修正欧拉法、龙格-库塔法和预测-校正法求解初值问题。
本文致力于开发一个数值模型,用于对具有施加运动的二维 (2D) 和轴对称物体进行水冲击。这项工作是实施用于分析飞机迫降的 2D+t 程序的第一步。在假设流体为无粘性和不可压缩流体的情况下研究该问题,该流体由具有自由表面完全非线性边界条件的势流模型建模。通过边界元法对具有自由表面的非稳定边界值问题进行数值求解,并与简化的有限元法相结合以描述射流的最薄部分。这项研究旨在描述进入和退出阶段。开发了特定的数值解来解决退出阶段并提高模型的稳定性。结果以自由表面形状、压力分布和作用于撞击体的流体动力载荷的形式呈现。该模型用于研究 2D 楔形体和轴对称锥体的进水和出水,文献中提供了相关数值或实验结果。数值研究表明,所提出的模型可以准确模拟进入和退出阶段。对于退出阶段,结果表明,所提出的模型是完全非线性的,与简化(分析)方法相比,它可以更好地预测负载和浸湿面积。重力的影响通常被忽略
向量微积分:梯度、散度和旋度,它们的物理意义和恒等式。线、表面和体积积分。格林定理、散度陈述和斯托克斯定理、应用。傅里叶级数:周期函数的傅里叶级数、欧拉公式。奇函数、偶函数和任意周期函数的傅里叶级数。半程展开。傅里叶积分。正弦和余弦积分、傅里叶变换、正弦和余弦变换。谐波分析。偏微分方程:基本概念、仅涉及一个变量的导数的方程解。通过指示变换和变量分离求解。用分离变量法推导一维波动方程(振动弦)并求其解。达朗贝尔波动方程解。用高斯散度定理推导一维热方程并求一维热方程解。用分离变量法求解。数值方法:一阶和二阶导数(常导数和偏导数)的有限差分表达式。边界值问题的解,二阶偏微分方程的分类。用标准五点公式求拉普拉斯和泊松方程的数值解,用显式方法求热和波动方程的数值解。参考文献: 1.Kreyszig, Erwin,《高级工程数学》,John Wiley & Sons,(第 5 版),2010 年。2.3.S. S. Sastry,《数值分析入门方法》(第 2 版),1990 年,Prentice Hall。B. S. Grewal,《高等工程数学》,1989 年,Khanna Publishers 4。Murray R. Spiegel,《矢量分析》,1959 年,Schaum Publishing Co.