“去年6月,德国宣布将在其与波兰,捷克共和国和瑞士的边界上重新引入边境管制,并利用申根系统的例外。现在,截至2024年9月16日,它将开始在其其他边界邻国比利时,荷兰,法国,卢森堡和丹麦的边界开始控制。众所周知,申根地区构成了一个自由移动区域,其中解除了内部边界控制。根据申根系统,必须有一些不可抗拒的边界控制。这些可能是由于对内部安全或公共政策的严重威胁。应在特殊情况下以及最后的手段应用。就德国的原因而言,它们列出如下:与不规则迁移,走私,增加欧盟外部边界的非法条目相关的安全风险,减少
自Fattorini和Russel的开创性工作以来,抛物面部分分化方程的无效可控性已被广泛研究[17]。从Fursikov和Imanuvilov [19]以及Lebeau和Robbiano [23]的作品中,人们通常会承认,在抛物线副部分差异方程的背景下,在控制域上没有限制,并且对控制域没有限制,在内部或边界控制上没有几何限制。最近,对特定示例的研究强调了无效可控性或控制域上的几何条件的积极最小时间的存在。实际上,在[13]中的70 s中已经提供了这样的示例,但是由于特定的点控制,当时还没有理解此结果的全部范围。关于这种最小时间的最新结果已在也被视为特定的上下文中证明,即对耦合抛物线方程的控制[2,4,5,14]或对退化抛物线方程的控制[7,8,9,6]。尽管这三个设置表现出相同的定性行为,但到目前为止,它们之间尚未建立任何精确的联系。我们在本文中的目的是给出一个抽象的框架,其中包含那些不同的框架来研究最小的零控制时间属性。更确切地说,我们将将这一最小时间与(1.5)定义的时间t ∗相关联。我们将强调,这种最小的时间可以具有不同的起源。可以通过(广义)本征函数的某些定位相对于观察算子B ∗(如[13,5,5,14,7,8,9,6])。在定理1.2中处理此方面。,但也可以通过[2,4]中的基础操作员的特征值的凝结来创建最小的时间。在定理1.3中处理了这一方面。在这两个抽象设置中,最小的无效控制时间将由t ∗给出。我们还将提出一个更通用的设置(包括之前的两个设置),以应对最小时间来自特征函数的定位和光谱的凝结的情况。在这种情况下(请参见定理1.4),我们将证明存在这种最小时间与t ∗有关,但是此最小时间的确切值将是一个开放的问题。最后,仍然有一些例子不适合我们研究的不同设置。有关其中一些示例(请参阅第二节4)我们仍将能够证明最小的空控制时间由t ∗给出。对特定示例的这种分析将需要先验最小时间的值,因此目前,在[7,8,6]中研究的退化抛物线方程将不在本文的范围内。
EEE G541 配电设备和配置 [3 2 5] 消费者端配电装置的基本配置。变压器类型、规格、性能、保护和尺寸。电缆和绝缘层的类型、电缆参数、载流量和保护。低压开关设备的额定值及其在选择、开关瞬态和清除时间中的应用。保险丝的属性(以载流量为参考)。仪表、仪器变压器及其应用。配电层的电压控制。电能质量功率因数、频率和谐波含量的基本概念 EEE G542 电力电子转换器 [3 2 5] 转换器的重要性在于它是电源和负载之间的接口。DC-DC 转换器:降压、升压和降压-升压配置。ACDC 转换器:单相和三相二极管和晶闸管转换器。晶闸管转换器中的逆变和线路换向逆变器的应用。 DCAC 转换器:单相和三相开关模式电压源逆变器、不同类型的 PWM 操作、多级 VSI 操作、空间矢量调制技术。AC-AC 转换器:晶闸管供电交流负载、循环换流器。矩阵转换器阵列及其作为 DC-DC 和 DC-AC 转换器的操作。EEE G543 功率器件微电子学与选择 [ 3 0 3] 功率器件封装的热特性、R θJC 和 R θCS 的问题、热流及其对器件温度的影响、散热器设计和选择。双层结行为、漂移区的概念、功率二极管的特性。厚膜 BJT 中的基极操作、稳态特性、开启和关闭时间、多级功率达林顿。四层结行为、晶闸管的两个晶体管模型、四层结器件的动态模型。GTO 晶闸管、四层结器件的关闭机制、当前的技术问题。 MOS 的工作原理和特性、功率 MOSFET 的特性和结构。MOSFET 到 IGBT 的发展、技术优势、特性和动态行为。绝缘栅技术的当前技术问题。矩阵转换器简介。EEE G545 电力电子系统控制与仪表 [3 0 3] 参考电力电子转换器的调节和控制问题。反馈转换器模型:基本转换器动态、快速切换、分段线性模型、离散时间模型。DC-DC 转换器的电压模式和电流模式控制、整流器系统的比较器控制、比例和比例积分控制应用。基于线性化的控制设计:传递函数、补偿和滤波、补偿反馈控制系统。滞后控制基础知识以及在 DC-DC 转换器和逆变器中的应用。一般边界控制:边界附近的行为以及合适边界的选择。模糊控制技术的基本思想和性能问题。电力电子电路传感器、速度传感器和扭矩传感器。EEE G552 固态硬盘 [3 2 5] 驱动系统简介:要求、组件和基准;电机理论回顾;电机的电力电子控制:要求和操作问题;感应电机的静态速度控制:交流电源控制器、滑差能量回收、VSI 和 CSI 控制的感应电机;同步电机和相关机器的速度控制;直流电机速度控制问题:整流器和斩波控制器;先进的感应电机驱动控制:矢量控制,