推导了采用负电子亲和力 NEA 金刚石发射极电极的真空热电子能量转换装置 TEC 的空间电荷限制输出电流模式的理论。该理论通过假设电子表现为无碰撞气体并自洽地求解 Vlaslov 方程和泊松方程而发展。讨论了该理论的特殊情况。执行计算以在各种条件下模拟具有氮掺杂金刚石发射极材料的 TEC。结果表明,NEA 材料在输出功率和效率方面优于类似的正电子亲和力材料,因为 NEA 降低了发射极的静电边界条件,从而减轻了负空间电荷效应。© 2009 美国真空学会。DOI:10.1116/1.3125282
23 Solute 154 23.1方法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 154 23.2牛顿 - 拉夫森(DNR)是方法 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 156 23.3准Newton(QN)方法 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 156 23.4线搜索方法 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。23 Solute 154 23.1方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。154 23.2牛顿 - 拉夫森(DNR)是方法。。。。。。。。。。。。。。。。。。。。。156 23.3准Newton(QN)方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。156 23.4线搜索方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。156 23.5非线性最小二乘。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。157 23.6梯度流量法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。157 23.7结合梯度(CG)方法。。。。。。。。。。。。。。。。。。。。。。。。。。158 23.8 Dirichlet边界条件和迭代求解器。。。。。。。。。。。。。。。。。158 23.9刚体运动和零能量模式。。。。。。。。。。。。。。。。。。。。。。。159
I. 简介 许多研究人员已经基于多孔弹性构建了脑积水的计算理论。此类模型将有助于更好地理解问题,从而提供更好的治疗方法。此类模型还忽略了分流术的间歇性影响,而分流术是治疗脑积水最常用的方法。我们使用弹性和流体力学来创建人脑和脑室系统的数学模型。我们的模型通过考虑跨导水管的流动并包括边界约束来扩展以前的工作。这将为疾病的边界和改善创建一个定量模型。我们开发并解决了该模型的控制方程和边界条件以及有意义的临床发现。我们的模型通过将导水管流与边界约束结合起来,扩展了早期对脑积水的研究。脑脊液沿着脊髓周围的蛛网膜下腔向下流动,然后进入颅脑蛛网膜下腔,然而,物理定律很难解释这种流动是如何持续的。采用体内刺激的数学方法来研究脉动血液、脑和脑脊液的动态相互作用 1 。本文介绍的模拟是为患有脑脊液生理病理疾病脑积水的个体生成的 2 。研究特发性脑积水化学浓度不对称循环的后脑室通透性 3 。使用基本的几何模型,当前的研究提出了一种全新的脑积水多物理扩散过程方法,并作为更复杂的几何模拟的标准 4 。研究了脑脊液在心血管和蛛网膜下腔的循环以及脑脊液渗入多孔脑实质的问题。开发了复杂大脑几何形状的边界条件 5 。将标准受试者的研究信息与代表颅内动力学的实际计算模型进行了比较。该模型利用特定于受试者的磁共振 (MR) 图像和物理边界条件作为输入,可重现脉动的脑脊液循环并模拟颅内压力和流速 6 。该数值模型用于探索横截面几何形状和脊髓运动如何影响非稳定速度、剪应力和压力梯度场 7 。该系统分为五个子模型:动脉系统血液、静脉系统血液、心室脑脊液、颅内蛛网膜下腔和脊髓出血腔。阻力和顺应性将这些子模型连接起来。构建的模型用于模拟七个健康个体中发现的关键功能特征,例如动脉、静脉和脑脊液流量分布(幅度和相移) 8 。此前,利用时间分辨三维磁共振速度映射研究人体血管系统中健康和异常的血流模式。利用这种方法研究了 40 名健康志愿者 9 的脑室系统中脑脊液流量的时间和空间变化。这些颗粒中的脑脊液和血液之间的屏障很小,使脑脊液能够流入循环并被吸收。与脑脊液的产生相反,消耗是压力-
本论文概述了量子电路中的双统一门的使用(量子门的特殊子集),尤其是将双重统一电路用作量子计算机的基准。由于对模拟器进行基准测试,只能以较低的量子位进行基准计算机,然后才能在国家向量表示的增强性质使得这一计算上的昂贵,因此需要更有效的基准测试。双统一门的电路是这样的良好候选者,因为对于某些电路来说,存在一个分析解决方案,其计算复杂性不会随量子数的数量扩展,并且仅涉及4×4矩阵上的矩阵操作。为了将该属性的有用性扩展到更多电路,对双统一电路进行了进一步的概括,以包括混合双重单位的电路以及更高维度的多军人。的确,一个自我的四分之一门 - 即在三个方向上找到一个量子门统一。检查是否可以通过这些电路构建有用的基准测量场景,将双重统一电路与量子计算机模拟器上的分析解决方案进行比较,并发现可以确定双重统一电路的适用性作为基准。要从理想化的有限网格到模拟器的步骤,必须将周期性的边界条件添加到原始网格中。要实现在量子计算机上使用基准测试的目标,从模拟器到量子计算机的步骤中,必须对实现进行一些更改。讨论了一些方法。这包括更改定期边界条件的实施。同样,与模拟器上的实现相反,必须找到一种评估量子计算机上的跟踪的方法。总而言之,即使对于某些问题(尤其是痕量评估),必须找到一种更有效的方法,才能在此基准方案中找到一种更有效的方法。
不动点。借鉴 Berinde [3, 4]、Wardowski [23] 和 Samet 等人 [19] 的工作,我们熟悉了偏度量空间框架中的几乎 α - F 收缩和几乎 α - F 弱收缩,然后建立了单个不动点存在的充分假设。此外,受到分数阶非线性微分方程在众多科学和工程领域中具有重要意义的启发,我们应用我们的结果建立了满足周期性边界条件的分数阶微分方程的解。此外,受到聚光太阳能大量发电是最适合以合理方式缓解气候变化以及减少化石燃料消耗的技术之一的现实启发,我们解决了将太阳能转化为电能时出现的边界值问题。
本十年将决定美国在本世纪中叶实现温室气体净零排放的选择。虽然科学表明,到 2050 年实现全经济净零排放对于避免气候变化的最严重影响至关重要,但能源行业的边界条件使其变化速度历来缓慢。1 它是一个资本密集的商品业务,拥有强大的供应链、成熟的客户群,并为社会各阶层提供基本服务。开发和部署新商业模式、技术和政策的时间表意味着需要立即在全国范围内做出承诺。为了在未来十年显著扭转排放曲线,有必要转向新的能源系统,同时迅速实现现有基础设施的脱碳。
矿山计划。应简要描述该区域的地质、排水和水文地质情况。可利用 CGWB/州/其他利益相关者在各种研究(如 NAQUIM、水文地质研究/调查/ EIA 等)过程中生成的现有数据来生成和制定模型。报告应包含详细的水文地质设置(含水层参数、水源和汇)、模型区域(边界)、模型网格大小和数量。应根据研究目标和数据可用性制定网格大小和数量,相应地将区域离散化,清楚地表明活动和非活动单元的数量。可以清楚地说明网格大小和数量的理由。应分析水文地质数据以划定研究区域的物理边界条件。