脑机接口 (BCI) 研究已开始用于从脑电图 (EEG) 中识别语音想象过程中的回忆音节。目前,很难从 EEG 数据中识别出真实的回忆持续时间。因此,通常使用不准确的回忆数据(包括非回忆持续时间或通过视觉确定频谱轮廓标记的回忆部分)来识别回忆的音节。由于视觉音节标记耗时费力,因此希望区分正确的语音想象片段的过程能够自动化。在本文中,我们构建了由语音想象片段和非回忆片段组成的每个模型以获得真正的音节片段。我们通过视觉判断从带有音节标记的语音想象/非回忆数据中提取复倒谱,并使用这些特征识别语音想象/非回忆片段。最后,我们报告了通过 10 倍交叉验证的分类结果。
本出版物是北约盟军转型司令部 (ACT)、博洛尼亚大学和罗马国际事务学院 (IAI) 组织的“太空:探索北约的最后边疆”会议的成果。该会议于 2023 年 11 月 8 日至 10 日在意大利弗利附近举行,是三家机构长期合作的一部分,也是 ACT 学术会议系列的第十次迭代。活动的成功归功于三家机构的共同努力,编辑们要感谢 ACT 的学术推广团队,特别是 Vlasta Zekulic 博士和 Andrea Martorana 中校,以及来自 IAI 的 Maria Bava。本报告中表达或暗示的意见、结论和建议仅代表撰稿人的观点,并不一定代表 ACT、博洛尼亚大学、IAI 或北大西洋公约组织任何其他机构的观点。
机器学习,尤其是深度学习,在太空应用中的应用越来越广泛,这反映了它在解决许多地球问题方面取得的突破性成功。由于模块化卫星和商业太空发射的发展,部署太空设备(例如卫星)对小型参与者来说越来越容易,这推动了该领域的进一步发展。深度学习能够提供复杂的计算智能,这使其成为促进太空设备上各种任务并降低运营成本的有吸引力的选择。在这项工作中,我们将太空深度学习确定为移动和嵌入式机器学习的发展方向之一。我们整理了机器学习在太空数据(例如卫星成像)中的各种应用,并描述了设备上的深度学习如何有意义地改善航天器的运行,例如通过降低通信成本或促进导航。我们详细介绍并阐释了卫星计算平台,并将其与嵌入式系统和当前资源受限环境下的深度学习研究进行了比较。
外层空间在技术发展、自然资源获取以及探索月球及更远太空的可能性方面具有巨大潜力。除了经济机会和社会经济效益外,卫星数量、参与者和太空活动类型的指数级增长也为太空活动的持续安全、可持续性和保障 (S3) 带来了挑战。这三个 S 受到太空拥堵、竞争和争夺加剧的威胁,如今太空越来越商业化,所有这些趋势正在融合 (C5)。本文探讨了欧盟 (EU) 在过去二十年中如何制定太空政策,以及它如何为有效、公平和可持续的全球外层空间治理做出贡献。本文认为,欧盟一直在建立坚实的支柱,成为全球太空治理的重要力量,并已成为该领域的真正和独立的贡献者,但仍有更多潜力有待实现,包括在制定未来太空法方面。
Jeppesen 高级副总裁兼航空总经理 Thomas Wede 表示:“通过移动 EFB 解决方案提供的数字飞行信息正在彻底改变航空业,我们很荣幸能与 Frontier Airlines 合作,他们正在评估在飞行的各个阶段使用 iPad 的可能性。iPad 上的 Jeppesen FliteDeck Pro 将帮助 Frontier Airlines 提高地面和空中的运营效率,减少飞行员的工作量,提高态势感知能力,减少油耗,从而降低运营成本。”
图4显示了使用20倍交叉验证估计每个受试者的回忆间隔的结果。在图 4 中,横轴是时间,纵轴是来自 5 个受试者的 200 个样本(总共 1000 个样本)的准确率。红框内是语音回忆部分。前文研究 [2] 中的方法(图 4 中的蓝线)的准确率在语音回忆片段之间下降到 0.2,而本文提出的方法(图 4 中的橙线)则达到了 0.8 的稳定准确率。 从这些结果可以看出,可以说所提出的方法对于估计回忆间隔是有效的。然而,当我们观察所提出的方法在语音回忆部分之外的准确度时,我们发现与以前的研究相比,该方法将语音回忆部分之外的部分估计为回忆率的情况更为常见。这被认为是由于大脑中噪音的影响。因此,我们旨在通过将增加的 10 个样本应用于所提出的方法来减少这种噪音。结果就是图4中的绿线。在保持回忆部分的准确度的同时,非回忆部分的准确度得到了提高。基于这些结果,我们研究了所提出方法的最佳添加次数。结果如图5所示。图 5 显示了所有受试者对每个加法数字的准确率。蓝线表示整个时间内的平均准确率,橙线表示回忆期间的最大准确率。横轴是添加的样本数量,纵轴是准确率。通过添加 sigma,回忆部分的准确率得到了提高,达到了约 90%。另外,10 次添加等于 1 个样本。
(a)延误补偿:每延误一天至少支付合同金额的千分之一。 (c)合同条款:依照日本陆上自卫队标准服务合同的条款。 中标人将是我们根据所有项目的总金额(项目总数和金额总数)确定的估价范围内最低出价的竞标人。如果有两名或两名以上最低出价者有资格中标,则通过抽签方式确定中标者。 E) 合同的成立:合同或其他文件成立,是指当事人在合同或其他文件上签字、盖章的行为。其他情况,应当在中标时作出决定。 其他:参照《招标投标及合同指南》。 (3)无效投标 a) 不具备参加竞争所需资格的人员进行的投标或违反投标条件的投标; b) 违反“投标和签约指南”的投标; c) 投标金额、投标人名称和投标人印章难以区分的投标; d) 投标人的排除有组织犯罪的承诺是虚假的,或者违反了承诺; e) 投标迟于投标日期和时间提交,或者投标文件以邮寄等方式提交并在交付期限之后到达; f) 通过电报、电话或传真提交的投标 (4)合同等。如果中标金额加上消费税金额为 150 万日元或以上,则将准备这些。但是,金额在50万日元以上150万日元以下时,将开具发票,金额不足50万日元时,则无需开具发票。 (5)其他 a.如您希望参加投标,您必须提前通过传真或其他方式提交2022至2024财年资格审查结果通知副本,或者,如果您目前正在申请资格,则必须提交一份表明您已经申请的文件。 (一)委托代理投标的,应当在投标开始前提交委托代理委托书。 C)投标文件中必须注明不含税金额。 E. 允许通过邮寄等方式进行投标。但是,申请书必须于 2024 年 10 月 29 日星期二下午 5 点之前送达日本陆上自卫队航空学校宇都宫校会计部。 若省略印章,须填写负责人及承办人的姓名及联系方式。 (c)如初次投标已有邮寄投标人,则重新投标的时间安排如下: 日期和时间:2024 年 11 月 6 日星期三上午 10:00,宇都宫校区总部大楼 2 楼投标室。如果您希望通过邮寄方式参与重新投标,您的申请必须在 2024 年 11 月 5 日星期二下午 5:00 之前到达日本陆上自卫队宇都宫校区航空学校会计部。 (6)联系信息1360 Kamiyokota-Machi,UTSUNOMIYA,TOCHIGI 321-0106有关竞标和合同有关的事项,请联系UTSUNOMIYYA校园的Aviation School的会计部门,请与校园相关。部门。电话:028-658-2151(分机535)负责人:与规格有关的事项的Yomota,请联系UTSUNOMIYA校园,航空管理团队(Ext。304)负责人(OGAKI)的人(7)位置。信息(URL:https://www.mod.go.jp/gsdf/kitautunomiya/index.html)C。JGSDF采购信息→“直接单位合同信息”,utsunomiya campus(url:https:/ https:/ https://wwwwwwwwww.mod.go.mod.go.mod.jpf/gsdf/gsntm cch/g。
Felix & Paul Studios 联合创始人兼 Infinity Experiences Inc 首席创意官 Felix Lajeunesse 补充道:“艺术与科技相交的新方式反映了我们向星空迈进的步伐。太空体验一直受到科技的影响。借助沉浸式技术,观众可以从内部体验宇航员的旅程。因此,限制不再是进入太空,而是我们如何将太空带回地球。这正是太空探索者:无限展览所提供的——一种大规模的多感官体验,让人们有机会进入国际空间站,体验地球以外的生活,并感受到漂浮在太空中的感觉。我们很高兴与 Kingsmen Exhibits 和新加坡科学中心合作,将这一开创性的体验带到东南亚。”
这项研究得到了日本科学技术振兴机构 (JST) 战略基础研究促进计划 CREST“用于长 DNA 合成和自主人工细胞创建的人工细胞反应器系统”研究领域 (编号 JPMJCR19S4)、GteX“大规模并行蛋白质打印机系统的开发”研究领域 (编号 JPMJGX23B1)、ASPIRE“日英合作开发人工光合细胞系统”(编号 JPMJAP24B5) 和科学研究补助金“Kikagaku S”(编号 JP19H05624) 的支持。 术语表(注1) 真核生物:具有细胞核并被核膜包围,且含有线粒体等细胞器的生物的统称。它们包括动物、植物和真菌,具有比原核生物更复杂的细胞结构。 (注2)内在无序蛋白质是在生理条件下不能形成三维结构的蛋白质,与酶等折叠成特定的三维结构才能发挥功能的蛋白质不同。分子间多样化的相互作用网络推动液-液相分离,形成称为凝聚层的液滴。 (注3)液-液相分离:均质液体混合物自发分离成两个具有不同成分的液相的现象。单一聚合物(如天然存在的变性蛋白质)可发生相分离,形成致密相和稀相,或者两种不同组成的致密相(如葡聚糖和聚乙二醇)。 (注4)肽标签:一种用于连接特定蛋白质的短氨基酸序列。通过将DNA序列遗传整合到蛋白质中,可以很容易地将其添加到蛋白质中。本研究中使用的肽标签具有拉链式结构,使得它们能够相互互锁并进行特定结合。另一方面,由于它几乎不与其他分子或蛋白质结合,因此可以利用这一特性选择性地将特定蛋白质结合在一起。在该系统中,一个肽标签附着在IDP上,另一个肽标签附着在要掺入IDP相的蛋白质上。 (注5)分子信标:用于检测特定DNA或RNA序列的核酸探针,具有包含荧光染料和猝灭剂的环状结构。在没有目标序列的情况下,荧光就不会出现,但一旦与序列结合,分子的形状就会发生变化,发出荧光并变得可检测。这可以实时确认样本中特定基因或 RNA 的存在。