我们引入了边缘化模型(M A MS),这是一个新的生成模型系列,用于高维离散数据。他们通过明确建模所有诱导的边际分布来提供可扩展和灵活的生成建模。边缘 - ization模型可以通过神经网络的单个正向通行的Arbi-Trary边缘概率快速近似,该概率克服了任意边缘推理模型的主要局限性,例如任何阶段的自动性自动化模型。MS还解决了在基于能量的训练的概述下,在训练任何阶段生成模量中遇到的可伸缩性瓶颈,在基于能量的培训的概述下,其目标是将学习分布与给定的DESIER概率匹配(由无标准的对数字概括性函数(例如能量或奖励功能)指定)。我们提出了学习边际的可扩展方法,该方法基于“边缘化自洽”的概念。我们将提出模型对各种离散数据分布(包括图像,文本,物理系统和分子)的有效性,以实现最大可能性和基于能量的培训设置。a MS在评估两个设置的边缘概率时达到了宏伟的加速顺序。对于基于能量的培训任务,M MS可以超出先前方法的规模,使高维问题的任何阶段生成型。代码可在github.com/princetonlips/mam上找到。
来源:FEMA和Verisk数据。注释:AMI =区域中位收入; FEMA =联邦应急管理机构; LMI =低收入和中等收入。颜色的社区是人口普查区,其中有色家庭的份额超过50%。多数白人社区是人口普查区,白人家庭的份额超过50%。LMI社区是普查区中位收入中位数不到AMI的80%的社区。中等收入社区是普查区中位收入中位数至少占AMI的80%但不到AMI的120%的社区。高收入社区是人口普查区中位收入至少占AMI的120%的社区。
每次对话都是由一个主持人进行的,该协助者在与社区/重点领域的儿童,年轻人和家庭直接合作方面进行了专业知识。我们很幸运有一个主持人会讲旁遮普语,这在与将其称为第一语言的家人和年轻人交谈时,可以更好地参与。这使年轻人和父母能够尽可能舒服地回答问题。主持人可以自由地通过修改或提出其他问题或围绕问题设计和运行活动来应对所涉及的人们的需求,以使会议尽可能吸引人,敏感和安全。例如,RCPCH和美国工作人员改编了这些材料,使年幼的孩子更具吸引力。
1. 引言 最近,美国和法国等国家发布的声明表明,太空现已成为国防战略的明确组成部分。因此,从低地球轨道 (LEO) 到地球同步轨道 (GEO),都需要监控关键资产、控制卫星发射等操作以及识别潜在或主动威胁。这些问题不仅对国防很重要,还可能对民用应用特别重要,例如监控专用卫星(电信、观测和科学任务)、交通处理、碎片识别和跟踪。低地球轨道尤其令人担忧,因为占据这一空间的卫星数量越来越多。借助雷达探测,可以轻松跟踪轨迹,而雷达成像可以提供卫星识别,尽管分辨率有限且成像深度有限 [1]。光学成像可以提供互补的高分辨率图像,并评估卫星的身份、状态、动态及其附近区域的控制。这需要具有快速转向能力的大口径望远镜来跟踪快速移动的目标。然后需要自适应光学 (AO) 来补偿大气湍流。因此,美国已经开发了这一领域的先进资产 [2][3]。本文的目的是展示和讨论使用专用原型获得的结果。我们还介绍了在这个特定框架下进行图像后处理的创新工作。Onera 确实为法国国防部开发了一种自适应光学 (AO) 辅助低地球轨道卫星成像仪原型。该系统还被用于演示低地球轨道卫星对地光通信 [4]。事实上,低地球轨道卫星空对地光通信在类似目标上面临着类似的问题,即使用自适应光学跟踪和补偿湍流。自适应光学台位于法国蔚蓝海岸天文台 (OCA) 的 MeO 望远镜上。考虑到低地球轨道卫星成像或光通信,其性能在很大程度上取决于卫星旋转速率驱动的湍流的快速时间演变。因此,我们开发了一种基于 GPU-CPU 的实时控制器,以减少循环延迟,从而减少时间误差。该控制器还提供了灵活性,以支持部分自动化的实施,以应对快速变化的情况。考虑到卫星成像,后处理也是一个关键问题。因此,我们利用天文学和生物医学成像领域的最新研究成果开发了专用的盲反卷积算法 [5][6][7][8]。我们首先简要介绍 AO 设置。我们讨论了系统要求和 AO 系统设计权衡。然后,我们讨论了后处理并介绍了在民用 LEO 卫星上获得的当前结果。