三刺鱼 (Gasterosteus aculeatus) 是一种硬骨鱼,是进化生态学的模型生物,可用于实验室实验和自然实验。它因形态、行为和遗传学的巨大种内变异而受到特别重视。Swarup (1958) 的经典著作描述了单个淡水种群胚胎在实验室中的发育,但此次实验是在比许多刺鱼在野外会遇到的温度更高的温度下进行的,并且没有研究种群之间的变异。这里我们描述了两种来自苏格兰北尤伊斯特岛的同域咸水生态型刺鱼胚胎的发育情况,它们在 14˚C 的温度下长大,这大约是北尤伊斯特岛湖泊在繁殖季节的温度。这两种生态型分别是 (a) 一种大型的迁徙型,成年鱼全身覆盖着骨质盔甲;(b) 一种体型较小、盔甲较浅的型,常年居住在咸水泻湖中。通过在受精后每 24 小时监测一次胚胎,观察并拍摄了重要的发育特征,为北尤伊斯特岛生态型在此温度下的发育提供参考。孵化成功率超过 85%,定居和迁徙棘鱼之间没有差异,但迁徙卵的孵化时间明显早于定居生态型。我们的工作提供了一个框架,现在可用于比较可能在不同环境条件下生长的棘鱼种群,以帮助了解正常发育特征的广度并描述异常发育。
在全球范围内,由城市发展驱动的栖息地丧失和破碎是对生物多样性的最重要威胁(Markovchick-Nicholls等,2009)。城市化导致了生物均匀化,迫使本地物种适应越来越均匀的环境,从而降低了可以共存的野生动植物的多样性(Olden等,2004)。SE对生物多样性的威胁危害生态系统功能和生态系统提供的基本服务。生态系统中的规格对于维持其功能至关重要。因此,跨营养小组的物种丰富度增加是确保高功能生态系统的关键(Vricella,2017)。测量生物多样性和跟踪保守的进步对于应对持续的挑战和发展有效的反应至关重要(Pauchard等,2018)。
新出现的新迁移路线的可能性大概是1)相关的健身收益和2)该路线首先出现的概率。有人提出,截然相反的“反向”迁移轨迹可能是令人惊讶的普遍性,如果这种途径是遗传的,则可以得出结论,因此,它们可以构成分歧迁移轨迹的快速发展。在这里,我们使用了欧亚黑色库(Sylvia Atricapilla;“ BlackCap”)响起的回收和地理定位器Tra jectories来调查最近进化的最近进化的北向秋季秋季候选路线,并伴随着快速的朝北冬季范围的扩张 - 可以通过每个人群人口传统的南方偏向偏向偏向偏移的逆转来解释。我们发现,向北的秋季移民被回收到轴线逆转所指定的位置的距离,而不是偶然的预期,这与新迁移途径的快速发展通过方向变化一致。我们建议,轴逆转的出乎意料的可能性可能解释了为什么鸟类迅速和发散的冬季范围,并建议在表征基因组成的基因组成部分迁移时,了解迁移方向的编码至关重要。
E. Rothermel(UMCES)起草了本最终报告。以下 BOEM 办公室或项目为本文件做出了贡献:可再生能源项目办公室。我们感谢 BOEM 的项目官员 B. Hooker 在整个项目过程中对资金管理和研究指导的帮助。我们感谢环境研究主管 M. Boatman 对本报告早期草稿提出的有益评论。我们感谢众多分享发射器数据的大西洋沿岸遥测网络科学家。我们特别感谢特拉华大学和特拉华州立大学的 D. Haulsee、M. Oliver、M. Breece 和 D. Fox 愿意分享数据并讨论研究设计要素。我们还必须感谢 B. Gahagan(马萨诸塞州海洋渔业部)以及 A. Higgs 和 J. Best(纽约州环境保护部)对条纹鲈鱼标记工作的配合。我们还要感谢 F/V Sea Born 号的 Cory 和 Kerry Harrington 以及 R/V Rachel Carson (UMCES) 号的 Michael Hulme 和 Robert Nilsen 在声学接收器阵列部署和维护方面提供的帮助。
2021年1月的作者:帕梅拉·H·洛林(Pamela H. Loring),美国鱼类和野生动物服务局(USFWS),迁徙鸟类部,哈德利(Hadley),马·阿里尔·K·伦斯克(Ma Ariel K.海洋环境的化学与生物学,大学。of Oldenburg, Germany Marley Aikens, Trent University, Peterborough, ON, Canada Alexandra M. Anderson, Trent University, Peterborough, ON, Canada Yves Aubry, Canadian Wildlife Service, Québec, QC, Canada Evan Dalton, Manomet Inc., Manomet, MA, USA Amanda Dey, New Jersey Division of Fish and Wildlife, Trenton, NJ, USA Christian弗里斯(Friis),加拿大野生动物服务局,多伦多,安大略省,加拿大戴安娜·汉密尔顿,艾里森山大学,萨克维尔,NB,加拿大,丽贝卡·霍尔伯顿,缅因州缅因州大学,奥罗诺大学,美国,美国,美国杜布拉·克里恩斯基,纽约市奥杜邦,纽约州纽约州纽约州纽约州纽约州纽约州,美国戴维·米兹拉希(New dy david) Partnerships LLC,新泽西州格林威治,美国凯特琳·帕金斯,纽约市奥杜邦,纽约,纽约,美国,美国,朱莉·帕奎特,加拿大野生动物服务局,萨克维尔,NB,加拿大菲西西亚·桑德斯,南卡罗来纳州,南卡罗来纳州,南卡罗来纳州,麦克莱伦斯维尔,麦克莱伦维尔,美国南卡罗来纳州麦克莱伦·史密斯,美国,美国国家,美国国家 /地区。 CollègeDelaPocatière,LaPocatière,QC,加拿大加拿大Andrew Vitz,马萨诸塞州渔业与野生动物部,马萨诸塞州韦斯特伯勒,美国,美国,Paul A. Smith,环境与气候变化,加拿大科学与气候变化,加拿大,加拿大,加拿大,加拿大,加拿大,在Boem Intra Intra Intra Intra Intra Intra Intra Intra Intra-Agency Inno No.M18PG00021由美国内政部美国鱼类和野生动物服务部迁徙鸟类300 Westgate Center Br. Hadley博士,马萨诸塞州01035M18PG00021由美国内政部美国鱼类和野生动物服务部迁徙鸟类300 Westgate Center Br. Hadley博士,马萨诸塞州01035
摘要:棱皮龟 Dermochelys coriacea 是全球濒危物种。本研究追踪了 30 只在加勒比海巴拿马繁殖地(博卡斯德尔托罗 San San Pond Sak 保护区)被标记的北大西洋种群个体,追踪时间长达 3 年。我们使用卫星遥测技术研究了海龟在迁徙和觅食行为状态之间切换的可能性,这些行为状态与环境变量有关。我们绘制了这些海龟的广泛迁徙路线,并使用遥感数据(包括叶绿素、生产力和海面温度 (SST))对其进行了分析,以评估这些数据如何影响它们的迁徙和觅食行为。我们还考虑了海洋过程,即与海龟迁徙路径相吻合的中尺度涡流,以了解它们的行为反应。我们的观察表明,虽然一些海龟进行了大规模迁徙,迁徙到东北和西北大西洋的高利用率地区,但大多数海龟仍留在墨西哥湾边界内。该研究有效地区分了迁徙和摄食行为,指出摄食活动与叶绿素浓度之间存在明显的正相关关系,而生产力只起到了边际作用,并且没有发现对 SST 和中尺度涡流的影响。这项研究促进了对北大西洋棱皮龟迁徙的了解,强调了综合、多学科海洋保护工作的重要性。要了解气候变暖对迁徙路径和食物来源可用性的影响,就需要采取一种整体方法,涵盖物理海洋学的变化、营养动态以及从浮游生物到更高营养级的相互作用。此外,由于棱皮龟穿越不同的国际领土,该研究强调需要合作收集数据以有效保护它们。关键词:San San Pond Sak · 隐马尔可夫模型 · 龟迁徙 · 觅食 · 高使用率区域 · 墨西哥湾 · Dermochelys coriacea
君主蝴蝶的魅力迁徙人群在北美急剧下降。促成威胁可能是其历史悠久的东部和西部夏季繁殖范围的冬季繁殖种群的扩张。最近的研究表明,来自冬季繁殖种群的人容易承受高寄生虫负担,与迁徙对应物相比,适应性较低。在秋季和春季,这些个体与迁徙君主之间的时间和空间重叠意味着同一寄主植物的杂交和使用可能导致寄生虫的转移,尤其是衰弱的Neogregarine ophryocystis elektroscirrha,从而增加了迁移群体中寄生虫的负载。我们旨在预测气候变化如何影响北美冬季繁殖君主的分布。我们使用君主幼虫观测的生态生态位模型用于冬季和当前的气候数据,以预测北美冬季繁殖君主的当前和未来分布。我们的分析预测,分别为东部和西部迁徙种群分别增加了2100次冬季繁殖君主的适合冬季繁殖君主的38%和160%的增加和340公里的偏移。我们的结果支持对疾病从居民君主传播到迁徙君主流行的潜在风险的关注。在东部和西方的迁徙人口中,这是由于居民人口与秋季和春季Mi grations途中迁徙人口旅行的地区的重叠增加所致。我们的结果支持呼吁控制非本地热带乳草的传播,因为冬季繁殖君主依靠该植物进行繁殖。
《波恩公约》 《保护野生动物迁徙物种公约》(波恩公约或CMS)于1979年在德国波恩通过,并于1985年生效。缔约方通过对濒危迁徙物种(列入公约附录一)提供严格保护、缔结需要或将从国际合作中受益的迁徙物种保护和管理多边协定(列入附录二)以及开展合作研究活动,共同保护迁徙物种及其栖息地。英国于1985年批准了该公约。《野生动物和乡村法》(1981年修订版)、《野生动物(北爱尔兰)法令》1985年和《自然保护和休闲用地(北爱尔兰)法令》规定了对附录I物种进行严格保护的法律要求。此外,英格兰和威尔士还颁布了《乡村和通行权法2000》(CRoW),通过增加处罚和执法权力来加强对某些物种的保护;并加强了对场地的保护,防止第三方造成的破坏。
《波恩公约》 《保护野生动物迁徙物种公约》(波恩公约或CMS)于1979年在德国波恩通过,并于1985年生效。缔约方通过对濒危迁徙物种(列入公约附录一)提供严格保护、缔结需要或将从国际合作中受益的迁徙物种保护和管理多边协定(列入附录二)以及开展合作研究活动,共同保护迁徙物种及其栖息地。英国于1985年批准了该公约。《野生动物和乡村法》(1981年修订版)、《野生动物(北爱尔兰)法令》1985年和《自然保护和休闲用地(北爱尔兰)法令》规定了对附录I物种进行严格保护的法律要求。此外,英格兰和威尔士还颁布了《乡村和通行权法2000》(CRoW),通过增加处罚和执法权力来加强对某些物种的保护;并加强了对场地的保护,防止第三方造成的破坏。
《波恩公约》 《保护野生动物迁徙物种公约》(波恩公约或CMS)于1979年在德国波恩通过,并于1985年生效。缔约方通过对濒危迁徙物种(列入公约附录一)提供严格保护、缔结需要或将从国际合作中受益的迁徙物种保护和管理多边协定(列入附录二)以及开展合作研究活动,共同保护迁徙物种及其栖息地。英国于1985年批准了该公约。《野生动物和乡村法》(1981年修订版)、《野生动物(北爱尔兰)法令》1985年和《自然保护和休闲用地(北爱尔兰)法令》规定了对附录I物种进行严格保护的法律要求。此外,英格兰和威尔士还颁布了《乡村和通行权法2000》(CRoW),通过增加处罚和执法权力来加强对某些物种的保护;并加强了对场地的保护,防止第三方造成的破坏。